A continually online trained neurocontroller for excitation and turbine control of a turbogenerator

Ganesh K. Venayagamoorthy
Missouri University of Science and Technology, ganeshv@mst.edu

Ronald G. Harley

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work
Part of the Electrical and Computer Engineering Commons

Recommended Citation
http://scholarsmine.mst.edu/faculty_work/1438

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
A CONTINUALLY ONLINE TRAINED NEUROCONTROLLER FOR EXCITATION AND TURBINE CONTROL OF A TURBOGENERATOR

1, 2Ganesh K Venayagamoorthy & 1, 3Ronald G Harley
1University of Natal, Durban, South Africa
2M L Sultan Technikon, Durban, South Africa
3Georgia Institute of Technology, Atlanta, USA
gkumar@ieee.org
ron.harley@ece.gatech.edu

The design and implementation of a continually online trained (COT) neurocontroller and a COT neuroidentifier on a practical turbogenerator system test bed, using multi-layer perceptron (MLP) neural network.

Both simulation and practical implementation results are presented in order to prove that the neurocontroller is stable when using deviation signals for online training.

The drawback related to MLP neural networks compared to the RBF neural network, reported in references [8] & [10] in the paper, is overcome with the use of deviation signals instead of using the actual signals.

It compares the performance of the neurocontroller with the conventional AVR and governor controllers but emphasizes on how to do neurocontrol with online training on a practical turbogenerator system.

Introduction

- The power grid is a complex and a variable network with many operational levels made up of a wide range of energy sources with many interaction points.
- As the demand for the electric power is outpacing the available sources, the complex systems that ensure the stability and security of the power grid are pushed closer to their edge.
- Turbogenerators supply most of the electrical energy and their performance is directly related to the stability and security of the power grid.
- A turbogenerator is a nonlinear, non-stationary, multivariable system.
- Conventional automatic voltage regulators (AVRs) and turbine governors are designed, based on some linearized power system model, to control the turbogenerator in some optimal fashion around one operating point. At other operating points the controller performance degrades.
- For large disturbances, these controllers operate outside the linear range and performance also degrades, thus driving the power system into undesirable operating states.
Inputs to the Turbogenerator
- Field voltage \(V_{f0} \)
- Turbine power \(P_r \)
- Forced deviations
 - Field voltage \(\Delta V_{f} \)
 - Turbine power \(\Delta P_r \)

Inputs to the Neuroidentifier
- Forced deviations
 - Delayed values of Field voltage \(\Delta V_{f},(k-1) \)
 - Delayed values of Terminal voltage deviation \(\Delta V_t,((k-1)) \)
 - Delayed values of Speed deviation \(\Delta \omega,((k-1)) \)
- Outputs of the Turbogenerator and the Neuroidentifier
 - Terminal voltage deviation \(V_t \)
 - Speed deviation \(\Delta \omega \)

Outputs of the Turbogenerator and the Neuroidentifier
- Terminal voltage deviation \(V_t \)
- Speed deviation \(\Delta \omega \)
- Neuroidentifier weights
 - Fixed
 - Backpropagation of errors at \(H \)
- Desired Response Predictor

Pre-training of the Neurocontroller
- Inputs to the Neurocontroller
 - Delayed values of Terminal voltage deviation \(V_t,((k-1)) \)
 - Delayed values of Speed deviation \(\Delta \omega,((k-1)) \)
- Outputs of the Neurocontroller
 - Deviation in Field voltage \(\Delta V_f \)
 - Deviation in Turbine Power \(\Delta P_r \)
- Inputs to the Neurocontroller
 - Forced deviations
 - Field voltage \(V_{f0} \)
 - Turbine power \(P_r \)
- Outputs of the Neurocontroller
 - Terminal voltage deviation \(V_t \)
 - Speed deviation \(\Delta \omega \)

Pre-training of the Neurocontroller
- Training signal \(\Delta V_{f0} \) applied to the exciter
- Speed deviation of the turbogenerator and the neuroidentifier

Post-control Training
- Online training continues
- Three procedures are carried out every sampling period:
 - Training the neuroidentifier
 - Training the turbogenerator
 - Controlling the turbogenerator
- First Procedure: Training the Neuroidentifier
Slide 11

Third Procedure Controlling the turbogenerator
- New control signals d_j are calculated using the updated weights from the second procedure and are applied at time $(k+1)$ to the turbogenerator at B.

Slide 12

Simulation Results: ±5% Step Changes in the Desired Terminal Voltage Setpoint
- $P = 1.0$ pu & $Q = 0.62$ pu,
- $Z = 0.02 + j0.4$
- $P = 1.0$ pu & $Q = 0.62$ pu,
- $Z = 0.025 + j0.6$

Slide 13

Simulation Results: Three Phase Short Circuit at the Infinite Bus
- The short circuit test is carried out at $Z = 0.025 + j0.6$ at $P = 1$ pu & $Q = 0.62$ pu.

Slide 14

Practical Pretraining of the Neurocontroller
- Training signal: P_s applied to the micro-turbine
- Neurocontroller output: Exciter input signal $I_{E出}$

Slide 15

Practical Results: ±5% Step Changes in the Desired Terminal Voltage
- Measured load angle with the conventional controller at $P = 0.4$ pu & $Q = 0.1$ pu.
- Measured load angle with the neurocontroller at $P = 0.4$ pu & $Q = 0.1$ pu.

Slide 16

Practical Results: ±5% Step Changes in the Desired Terminal Voltage
- Measured load angle with the conventional controller at $P = 0.5$ pu & $Q = 0.5$ pu.
- Measured load angle with the neurocontroller at $P = 0.5$ pu & $Q = 0.6$ pu.
A continually online trained neurocontroller strategy has been proposed and implemented for turbogenerator excitation and turbine governor. The neuroidentifier and neurocontroller undergo pre-training until convergence is attained, before allowing them to control the turbogenerator. Thereafter they undergo continually online training. Hence the stability and robustness issues are not a major problem, since the neural network inputs and outputs are deviation signals. The results illustrate that not only is it possible to practically implement neuroidentifiers and neurocontrollers, but that their performance is comparable to, or better than the benchmark conventional controllers which are fine tuned for a particular operating point and system configuration. However, when the system conditions change, such as different power levels, the neuroidentifier correctly identifies these changes, and the neurocontroller performance therefore does not degrade, as in case of the conventional controllers.

The superior performance of the neurocontroller occurs because the online training never stops and deviation signals are used. Another important consideration is that the neural networks have no prior information of the turbogenerator and the grid it is connected to, need no tuning on site during commissioning, and are therefore completely self-commissioning. Such neurocontrollers allow power plants to be operated closer to their steady state stability limits, thus producing more electrical power per Dollar invested. Further studies are in progress with this neurocontroller on a three-machine power system which suffers from multi-mode oscillations, and preliminary results look encouraging.

The authors gratefully acknowledge the financial support from:
- National Research Foundation, South Africa.
- University of Natal, Durban, South Africa.
- M L Sultan Technikon, Durban, South Africa.