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Critical Assessment of the Polarized-Orbital Method in Atomic Scattering*
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(Received 23 April 1968)

The method of polarized orbitals used in calculating electron-atom scattering amplitudes
has two obvious flaws: the wave function is discontinuous, and the method is not variational-
ly based. These are corrected in a somewhat arbitrary manner, and it is found that the re-
sults then depend upon a parameter of the theory sufficiently strongly that there are serious
doubts about the predictive nature of the theory.

I. INTRODUCTION

Techniques for calculating the scattering ampli-
tude of an electron by an atom may be divided into
three categories, predictive, checkable, or phe-
nomenological. By the first we mean a no-param-
eter theory which purports to describe the situa-
tion. For example, the "optical potential" method
was such an attempt. ' It contains the static-
exchange approximation with the variational inclu-
sion of the long-range polarization effects. A pre-
scription for the continuation of the polarization po-
tential to small x was given with the expectation
that the Pauli principle mould make the results
less dependent on the details of the cutoff. This
expectation was borne out but not sufficiently to
give quantitative agreement. That is, the cutoff
parameter for the polarization potential still had
to be chosen to give a fit with experiments. This
then made the theory of the third type, the phenom-
enological, The close coupling method, ' and its
offshoots, ' are examples of our second category,
the checkable ones, as are other variationally
based calculations. ~ By this we mean that when a
basis is chosen for a variational calculation, the
reliability of the results can usually be assessed
by a comparison with an expanded basis. '

Theories of the first kind are the most ambitious
and the most valuable. The method of polarized
orbitaiss (p.o.) has been interpreted as such a the-
ory and is becoming more widely relied upon as
such. ' It is the object of this note to investigate
the reliability of this method by correcting its ob-
vious flaws and assessing its accuracy. In order
to do this, we have presented (in the next section)
a new ansatz for the trial form of the wave function.
%e emphasize here that this is not presented as a
new and desirable way to calculate electron scat-
tering but merely as a generalization of the p.o.
method designed to assess its accuracy. Also in
the next section, we discuss the simple case of s-
wave electron-hydrogen singlet scattering. The
singlet is chosen in that it is a more stringent test
of the theory than is the triplet ~

II. FORMAL DEVELOPMENT AND RESULTS

The p.o. method is designed to give an approxi-
mate solution for the scattering described by the
Schrodinger equation

(E H)$ =0-
The method is based on an assumed form for a
scattering wave function, which for singlet s -wave
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electron-hydrogen scattering is'~'

=[u(r 1)/r l][t (r2)

-~(r, -r2)(1/r, ')X, &(r2, r, )]

where

(2)

tion, then (5) is better.
The substitution of (5) into the form

I= JdV,dsr, g*(E -H)(I), (6a)

and the variation with respect to u(r), with the con-
dition

(,) ~( )
f(,/, )„(r r )8 p 2 1

x

where f is an arbitrary function. It could also be
determined variationally, but the resulting equa™
tion is sufficiently complex so that it will not be
treated numerically here. Clearly, (5) contains
(2) as a special case, and if (2) is a good assump-

(5)

A = 1+X» (3)

and X» exchanges coordinp. tes 1 and 2. p is the
wave function of the ground state of hydrogen, and

is the lowest-order distortion due to a distant
sta ionary charge.

X P(r2, rl) =rl' 2(r2+-'r2')P(r2) (4)

e(r, -r~) is a step function which is unity for r, &r~
and vanishes otherwise. The scattering function
u(r, ) is determined by substituting (2) into (1) and
then multiplying the result by p(r, ) and integrating
over r~ and the angular part of ry The choice of
(2) is designed to include the polarization of the
bound electron by the free one. It gives the long-
range potential exactly and cuts it off by the pre-
scription that there is no polarization when the in-
cident electron is inside the bound one.

One disagreeable aspect of this method is the dis-
continuity (e) built into the wave function. It is not
admissible under the general rules of quantum me-
chanics. It causes no difficulty in the p.o. method
because of the prescription for obtaining the equa-
tion for u. Another, but less powerful, objection
is that the equation for u is not derived variation-
ally and so could be improved. The'use of the
Kohn variational principle with the form (2) would
result in infinities owing to the discontinuity in e.

%e have attempted to remedy both these defects
by replacing the step function by a smooth one and
then treating the problem variationally. The func-
tion, which we have chosen to replace &, is an ar-
bitrary function of the variable r,/r, This .ap-
pears to us to be the simplest way of modifying (2)
and still retain the content of the p.o. method. The
new form of the trial function is now

Z{r)=r[/i "/4/1 + ~ {r)//1]

where ro. {r)= f dxx'p'(x)[a, +a,f(r/x)
+a+(rf(x)+a f"(r/x)]

and a, =2/r-2ho(r, x)

a, =(4x/3r')(1+x/2)h, (r, x)

a~ = (x /3r )(1+x/2)'[2/r 2ho(r, x)-
', h, (r, x-)-] 2(x'/r '-) (-1+x/2)

x (1-2/r'+x'/r')
a, = -(1/Sr')(1+x/2)'(1+r'/x')

where

h&(r, x) = (1/r )(r /r )

{10)

(11)

(12a)

(12b)

(12c)

(12d)

(12e)

where r&(r&) is the greater (lesser) of x and r.
The nonlocal potential is

0(, ')=~ "'( )q(, ')fi "'(r'), (»)
where

5I= 0, (6b)

results in~

[d2/drd + k2+ Z(r)/r]v (r)
+ f„dr'Q(r, r')v(r') = 0, (7)

where k' is the incident ener gy of the electron (in
Rydbergs).

The new function v(r) is related to u(r) by

v{r)= [A(r)]"W(r) (8)

where

d(x)= j dxx'O'(x) 1+-' —(1+—) f'(-)
is essentially the normalization of the perturbed
bound state. A (r) is a constant for r -~; so, the
u and v yield the same phase shift. The boundary
conditions are the usual ones for s-wave scatter-
ing, at r =0 and ~. The potentials in (7) are given
by

I I

g(r, rf) =rrxrp{r)q&{rf) k'+1-2ho+ m~h, ~ 1+—f+~ 1+2 f

xff (1+ )(1+ 4 )(I
+-'4 )+(4 —1),(4+~4) (1+ 4 )+1 . , (1 -1)

xff'
( 1) (1+ )+ff'1 (

——() ((+r) xff"
4 „((+4)(lx4)

+ff", (1+—
) (1+4), (14)

where the notation is f=f(r/r') and f =f(r'/r), and
a prime on f indicates a derivative with respect to
the argument of the function.

Variation of (6) with respect to f, with the condi-
tion (6b), results in an equation for f of the form~

B f"(x)+B f'(x)+B f(x)+B

+ r,f-(1)+rf (')+rp(')+r, =o, (14)
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where again the primes on f indicate derivatives
with respect to the argument. The functions &~
and I

&
are complicated functions of x which depend

bilinearly on v. Equations (7) and (15) therefore
constitute a nonlinear set of equations,

Equation (15) is an unusual form, a functional
differential equation. However, it can be convert-
ed to a pair of coupled second-order differential
equations with the introduction of a new function
g(x) =f(1/x). The optimum procedure now would
be a solution of the coupled set (7) and (15) with
the definition (8). This is a major computational
task, which is not necessary for our purposes.
Instead, we have solved (7) with various "reason-
able" choices of f. The boundary conditions on
f(x) are

lim f(x) —1 (16a)

lim x 'f 'x) & ~
x-0 (16b)

The first of these insures that (5) has the correct
fox m when the scattered electron is well separat-
ed from the atom; the second is the condition that
(5) be finite at r, =0. An analysis of {15)shows
that f(x) behaves as x' for small x and differs from
unity by terms of order (x lnx)-' at large x.

Equation (7) describes the scattering of the elec-
tron in the local potential Z/r and the nonloeal one

We have investigated the behavior of the local
potential in the limits x-0 and r -~. For small
r the effective charge Z(r) becomes

Z(0) =2C, (17a)

(18a)

M = f dri Q(r, r~)v(r~)v(r),Dr o

IV=D I dr'Q(r, r')v(r')v'(r)/4'

D{r)= v'(r)+v "(r)/0'
The transformation

v(r) = [exp(-2 J dr'IV(r'))]so(r)

results in

(d'/dr'+ k'+ Z/r + M=,N'=, PP)se = 0.

(18b)

(1.8c')

(18d)

(20)

This may now be interpreted as a scattering equa-
tion with a potential depending upon the scattering
function through M and ~. We must now investi-
gate the behavior of these functions for small r in

C=1+-,'f —,f—{x)-(I+x')f"(x) . (17b)

Care must be taken in interpreting this as the ef-
fective charge at the origin. %6 are dealing with
a nonloc" I equation and the nonlocal part may also
contribute a potential behaving as x-' at the origin.
In order to illustrate this and our method of numer-
ical computation, we shall formally convert (7) in-
to a local equation by the "Gammelizing" process. "
Equation (7) can be rewritten as

(&
~+X~+k2+ —+M v =0,cf cf 2 Z

2'v

where

order to determine the effective local potential at
the origin. Simple but lengthy analysis yields the
result that the integral

J, dr'Q(r, r')v(r')

behaves as x for x - 0. Hence the dominant poten-
tial term is indeed Z/r for r -0, and we obtain the
result that the optimum potential with the form (5)
has a fictitious charge at the origin of magnitude
given by the second term in (17b). This result is
purely a result of the form of the triaI function;
however, it does illustrate that statements con-
cerning the way that the polarization potential
should be cut off are not very meaningful. For in-
stance, in contrasting the Buckingham form' (-o.'/
(r'+d')') with the form obtained from the p.o. meth-
od, the latter has been given preference on the
grounds that it vanishes at x = 0 where the former
does not. %6 believe that our result, while not
particularly meaningful physically, has a better
foundation than either of the above methods, and
yet it introduces a singular potential at the origin
of the form 2(C-1)/r.

For large x, the nonlocal potential contribution
vanishes exponentially and so may be dropped. %'6
find that the dominant texm is just the correct po-
larization (r-4) potential as in the p.o. method.
However, our next term in the potential is —~r
which is exactly the leading nonadiabatic contri-
bution to the potential. " This contribution comes
solely from the f term in (ll), and is independent
of the details of f, depending only on the condition
f(~) = 1. Bilinear terms in f in the potential ean
not arise in the p.o. method, and so this potential
term can not arise there. There are of course
additional r contributions from the quadrupole
polaxizability in the actual potential. . By adjusting
f we can introduce additional r ' terms in our po-
tential, but they are repulsive whereas the quadru-
pole polarizability is attractive. We do not believe
that this is a serious objection to this method or
to the p.o. method in that the r 6 terms are domi-
nated by the x- terms, which are correctly given,
and moreover, both long x ange potentials are only
important in the vicinity of thresholds.

Our numerica1 procedure for solving (7) was to
first convert it to the form (18a) and then iterate
by the following procedure: The potentials, M and
N, are evaluated with some guess for v; Eq. (18a)
is then solved by standard means and the resulting
+ used fox" Rn improved 6VRIuRtlon of M Rnd +.
Convergence was obtained when the ratios of two
successive phase shifts agreed to «10 4. Integra-
tion of (18a) was extended only out to r = 10. The
remaining long-range potential was treated by
fll st-ox'dex' pertulbRtlon theory. We estimate that
our numerical results are good to the figures
quoted.

We have used the functional form

f{x)=x /(d +x ) (21)

with n and 4 as adjustable parameters. Roughly,
d controls the region in which the jump in f takes
place and n the steepness of the jump. The p.o.
method is obtained from d = 1 and n -~, but the po-
tentials Z and Q become singular because of the
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TABLE I. Phase shifts, in radians, for singlet s-wave scattering 60 for various values of n and d used to parame-
trize f(x).

7
1.0

5
2.0

5
1.0

3
1,0

3
0.8

3
1.2

3
1.6

3
1.8

3
2.0

3
3.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.300
1.745
1.368
1.079
0.843
0.649
0.485
0.349
0.235
0.139

2.415
1.889
l.522
1.246
l.030
0.861
0.731
0.635
0.562
0.512

2.295
1.740
1.364
1.076
0.842
0.647
0.485
0.350
0.237
0.142

2.273
1.718
1,345
l.061
0.829
0.636
0.475
0.341
0.229
0.134

2.017
1.494
1.158
0.895
0.673
0.482
0.320
0.181
0.062

-0.041

2.390
1.848
1.466
1.176
0.942
0.752
0.598
0.470
0.370
0.288

2.444
1.917
1.536
1.246
1.015
0.831
0.684
0.567
0.476
0.405

2.467
1.948
1.571
1.283
1.056
0.877
0.737
0.628
0.545
0.482

2.474
1.959
1.584
1.299
1.076
0.901
0.764
0.662
0.584
0.527

2.473
1,959
1.586
1.303
1.082
0.909
0.777
0.678
0.603
0.551

2.444
1.926
1.558
1.281
1.066
0.901
0.772
0.678
0.611
0.565

2.4—

2.0—

1.6—

p+ I 4—
0

1.2—

0.8—

0.4—

0.2—
0 .2 .5 .4 .5 .6 .7 .8 .9

FIG. 1. Singlet s-wave phase shifts for some of our
results and some results of previous calculations.

f" term in (11) and the last two terms of (14). In
Table I, results for various values of the para, m-

I t I t t l I I I

eters are presented along with results of other
calculations. It is seen that for d= 1, variation of
n in the range 3, 5, 7 does not produce significant
changes in the phase shift. Thus, the steepness
of the transition of f is apparently not critical.
However, va, riation of d does give significant dif-
ferences as seen from the table and from the fig-
ure. This method gives a lower bound' to the
pha, se, a.s do the close coupling calculations of
Burke and Schey" and the variational calculation
of Schwartz, 4 so that the larger the phase shift
among these calculations the better the result.
Referring to Fig. 1 and the Table, we see that
la, rger values of d give better results, and for d
=2 or 3, our results a,re essentially those of the
three-state calculation of Burke and Schey" for
most of the energy range. Actually, the d=3 re-
sults lie somewhat below the d=2 ones for most
of the energy range so that we expect that we
roughly have found the optimum f within the func-
tional form of Eq. (21). It is clear that a solution of
(15) and (7) would yield better pha. se shifts than
the ones which we have found, but since this is not
the object of this paper, we shall not pursue it
here. The preference which we find for larger cut-
offs may be interpreted as an indication that adia. -
batic criteria, which are used to motivate (2) and
(5), should not be extended too close to the atom.
This indication has appeared before. "

In conclusion, we feel that the success of the
p.o. method in giving phase shifts is not fully un-
derstood and that the apparently improved method
presented here has enough dependence upon the
arbitra, ry pa, rameters inherent in the theory to
eliminate it and the original p.o. method from the
predictive class at this stage of our knowledge.

*Supported by NASA grants NsG-243, NGR 05-003-172,
and ARPA contract DAHCO4-67C-0070.
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Coupled-States Method for Scattering Calculations

J. F. Perkins
U. S. Army Missile Command„Re@stone Arsenal, Alabama

(Beceived 12 February 1968; revised m6nuscript received 26 April 1968)

The eigenfunction-expansion method for calculating scattering of electrons and positrons
from atoms has the very desirable property of providing phase-shift bounds, but is slowly
convergent in some cases. Phase-shift bounds and improved convergence are combined in
recently developed hybrid methods, but these are complicated to apply. An alternative
method based on expansion in target states, some of which are chosen for best convergence
rather than restricted to eigenstates, is proposed. The coupled equations are similar to
those of the eigenfunctjon-expansion method and provide phase-shift bounds. The method
was tested by calculation of 8-wave positron-hydrogen scattering at energies of k2 = 0, 0. 04,
0. 16, and 0, 36. Target states used in the expansions (1s2P' and ls2P'3d') were of the same
functional form as eigenstates, except that orbital exponents were not fixed at & and ~. Cal-
culated phase shifts as a function of orbital exponent value have a broad maximum for ex-
ponent values larger than those of eigenfunctions, and phase shifts are considerably larger
than those calculated with eigenfunction expansions.

INTRODUCTION AND DISCUSSION

In calculating approximate solutions of the non-
relativistic Schrodinger equation for atomic sys-
tems, it is desirable to have methods which are
convenient to apply, converge rapidly, and lead
to improved estimates of the relevant physical
parameter as the approximation ig increased in
scope. A discussion is given of these properties
as they apply to various methods of treating the
scattering of positron& and electrons by atoms,
as well as to bound-state calculations. A coupled-
states scattering method, which is a modification
of the familiar eigenfunction-expansion method, is
proposed, and its effectiveness tested by applica-
tion to S-wave scattering of positrons from hydro-
gen atoms.

Development of appropriate methods for treat-
ing scattering problems' has been more difficult
than for bound states. Trial functions automat-
ically provide an upper bound to the energy of the
lowest discrete state of the same symmetry as
the trial function'; hence variational estimates of
energy necessarily improve as a trial function is
made more flexible. Upper energy bounds are
also provided for higher states by Rayleigh-Ritz
calculations, involving variation of expansion
coefficients, and sometimes by methods involving
continuous variation of functions. ' Of intuitive
appeal are expansions formed from products of
eigenfunctions of a one- electron Hamiltonian. It
has long been realized, however, that such ex-
pansions converge very slowly. 4 This can be ex-

plained by noting that there are non-negligible
contributions from continuum one- electron
eigenstates, Alternatively, one can merely ob-
serve that the excited one-electron eigenfunctions
become spatially quite diffuse, whereas extra
flexibility of the trial function is needed in the
vicinity of the nucleus. Thus, in spite of the
elegance of eigenfunction expansions, it has proven
desirable in bound-state problems to simply choose
expansion states for best convergence. 4

Similarly, it has been appealing to treat the
scattering of pasitrons and electrons by atoms by
the use of a trial function, expressed as a sum of
products of target eigenstates with initially unde-
termined functions of coordinates of the scattered
particle. ' The equations are separated by multi-
plying by each of the target states in turn, and
integrating over target coordinates. The result-
ing set of differential or integrodifferential equa-
tions are then solved numerically. This eigen-
function-expansion method, often called the close-
coupling method, is relatively straightforward in
application. It has been extensively employed and
has led to quite important results, including pre-
diction of scattering resonances, ' but the conver-
gence properties have turned out to be rather
poor in some cases. '

By analogy with bound-state prob1ems, one might
expect improvement in convergence, if the expan-
sion states were chosen to be spatially compact
rather than restricting them from the outset to
target eigenstates. This possibility has been
mentioned by various authors, '~' but has not been.
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