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Nonanalytic behavior of the spin susceptibility in clean Fermi systems
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The wave vector and temperature-dependent static spin susceptibility,xs(Q,T), of clean interacting Fermi
systems is considered in dimensions 1<d<3. We show that at zero temperaturexs is a nonanalytic function
of uQu, with the leading nonanalyticity beinguQud21 for 1,d,3, andQ2lnuQu for d53. For the homogeneous
spin susceptibility we find a nonanalytic temperature dependenceTd21 for 1,d,3. We give qualitative
mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to
second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant
ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative
results for one-dimensional systems, as well as for the temperature dependence ofxs(Q50) in d53.
@S0163-1829~97!04216-1#

I. INTRODUCTION

It is well known that in fluids—that is, in interacting
many-body systems—there are long-range correlations be-
tween the particles. For example, in classical fluids in ther-
mal equilibrium there are dynamical long-range correlations
that manifest themselves as long-time tails, or power-law
decay of equilibrium time correlation functions at large
times.1,2 In frequency space, the analogous effects are
nonanalyticities at zero frequency. In an intuitive physical
picture, these correlations can be understood as memory ef-
fects: the particles ‘‘remember’’ previous collisions, and
therefore so-called ring collision events, where after a colli-
sion the two involved particles move away and later recol-
lide, play a special role for the dynamics of the fluid. Tech-
nically, the long-time tails can be described in terms of
mode-mode coupling theories. The salient point is that with
any quantities whose correlations constitute soft, or gapless,
modes~due to conservation laws, or for other reasons!, prod-
ucts of these quantities have the same property.3 In the equa-
tions of motion that govern the behavior of time correlation
functions this leads to convolutions of soft propagators,
which in turn results in nonanalytic frequency dependences.
For phase-space reasons, the strength of the effect increases
with decreasing dimensionality: while in three-dimensional
~3D! classical fluids the long-time tails provide just a correc-
tion to the asymptotic hydrodynamic description of the sys-
tem, in 2D fluids they are strong enough to destroy
hydrodynamics.1,4

A natural question to ask is whether such long-range cor-
relations also occur in position space. Indeed, in classical
fluids in nonequilibrium steady-state effects occur that may
be considered as the spatial analogs of long-time tails, but in
thermal equilibrium this is not the case.1,2 This changes,

however, if we consider quantum fluids. The quantum nature
of a system has two major implications as far as statistical
mechanics is concerned. First, temperature enters, apart from
occupation numbers, through Matsubara frequencies, which
means that the system’s behavior as a function of tempera-
ture will in general be the same as its behavior as a function
of frequency, at least at asymptotically low temperatures.
Second, and more importantly, in quantum statistical me-
chanics statics and dynamics are coupled and need to be
considered together. This raises the question of whether in a
quantum fluid there might be long-range spatial correlations
even in equilibrium.

From studies of systems with quenched disorder, there is
evidence that the answer to this question is affirmative. Let
us consider interacting fermions in an environment of static
scatterers. In dimensionsd.2, and for a sufficiently small
scatterer density, the relevant soft modes in such a system
are diffusive, so frequencyV, or temperatureT, scales like
the square of the wave vectorQ, V;T;Q2. Via mode-
mode coupling effects that are analogous to those present in
classical fluids, dynamical long-range correlations lead to
long-time tails in equilibrium time correlation functions. For
instance, the electrical conductivity as a function of fre-
quency behaves likeV (d22)/2 at smallV in d.2.5 The dy-
namical spin susceptibilityxs(Q,V) shows no analogous
long-time tail atQ50 for reasons related to spin conserva-
tion. However, from the above arguments about the coupling
of statics and dynamics in quantum statistical mechanics and
the scaling of frequency with wave number, one would ex-
pect thestatic spin susceptibility,xs(Q,V50) at T50, to
show a related nonanalyticity atQ50, namely,
xs;uQud22. This is indeed the case, as can be seen most
easily from perturbative calculations.6 Schematically, the
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coupling of two diffusive modes leads to contributions to
xs of the type

E dqE dv
1

v1q2
1

v1V1~q1Q!2
, ~1.1!

which leads to the above behavior. One can then invoke
renormalization-group arguments to show that this is indeed
the leading small-Q behavior ofxs . Similarly, at finite tem-
perature the homogeneous susceptibility behaves as
xs(Q50,V50);T(d22)/2. This has interesting conse-
quences for itinerant magnetism in such systems, as has been
recently discussed.6–8

Somewhat surprisingly, the situation is much less clear in
clean Fermi systems. Here the soft modes are density and
spin density fluctuations, as well as more general particle-
hole excitations. All of these have a linear dispersion rela-
tion, i.e.,V;uQu. The form of the dispersion relation does
not affect the basic physical arguments for nonanalytic fre-
quency and wave-number dependences given above. One
might thus expect the spin susceptibility to have mode-mode
coupling contributions of a type analogous to those shown in
Eq. ~1.1!, but with ballistic instead of diffusive modes:

E dqE dv
1

v1uqu
1

v1V1uq1Qu
, ~1.2!

which leads toxs(Q,V50);const1uQud21 in generic di-
mensions atT50. In d53, one would expect aQ2lnuQu
behavior, as convolution integrals tend to yield logarithms in
special dimensions. Such a behavior ofxs would have pro-
found consequences for the critical behavior of itinerant fer-
romagnets, as has been pointed out recently.9 It is therefore
of importance to unambiguously determine whether or not
the above mode-mode coupling arguments do indeed carry
over from disordered to clean systems.

Before we start this task, let us discuss the available in-
formation concerning long-range correlations in clean Fermi
systems. The specific heat is known to be a nonanalytic func-
tion of temperature, viz.,CV /T;T2lnT in d53. This is a
consequence of a nonanalytic correction to the linear disper-
sion relation of the quasiparticles in Fermi-liquid theory,
namely,De(p);(p2pF)

3lnup2pFu.
10 Such a nonanalyticity

signal the presence of a long-range effective interaction be-
tween the quasiparticles, and in general it will lead to
nonanalytic behavior of both thermodynamic quantities and
time correlation functions. TheT2lnT term in the specific-
heat coefficient is an example of such an effect. Ind52 the
behavior isCV /T;T,11 which is consistent with the behav-
ior CV /T;Td21 in generic dimensions that one would ex-
pect from the above arguments. It was natural to look for
similar effects in other quantities, in particular in the spin
susceptibility. These investigations concentrated on the tem-
perature dependence ofxs , and several authors indeed re-
ported to have found aT2lnT term in the homogeneous static
spin susceptibility. However, other investigations did not
find such a contribution.12 The resulting confusion has been
discussed by Carneiro and Pethick.13 These authors used
Fermi-liquid theory to show that, whileT2lnT terms do in-
deed appear in intermediate stages of the calculation ofxs as
well as ofCV , they cancel in the former.

This somewhat surprising result casts some doubt on the
general physical picture painted above, which suggests the
qualitative equivalence of disordered and clean systems with
respect to the presence of long-range correlations, and result-
ing nonanalyticities in both the statics and the dynamics of
quantum systems. On the other hand, a failure of this general
picture would be hard to understand from several points of
view. For instance, ind51 the instability of the Fermi liquid
with respect to the Luttinger liquid is well known to manifest
itself in perturbation theory forxs by means of logarithmic
singularities.14,15This is precisely what one obtains from the
mode-mode coupling integral, Eq.~1.2!. By continuity one
therefore expectsxs(Q50,T);Td21, and xs(Q,T50)
;uQud21, at least ind511e. Unless the physics changes
qualitatively betweend511e andd53, this should still be
true in higher dimensions. Also, the corrections to Landau
theory we are discussing here can be cast in the language of
the renormalization group. In this framework, the Fermi-
liquid ground state is described as a stable fixed point,16 and
the effects we are interested in manifest themselves as an
irrelevant operator that leads to corrections to scaling near
this fixed point.17 In a system whereQ, V, andT all have a
scale dimension of unity, this operator should appear as
uQud21, Vd21, etc., dependences in various correlation func-
tions. From a general scaling point of view it would be hard
to understand if this were not the case, except for the possi-
bility that the prefactors of some nonanalyticities might ac-
cidentally vanish in certain dimensions.

It is the purpose of the present paper to clarify this con-
fusing point. We will show that the above general physical
picture does indeed hold true, and that it is not violated by
the previously found absence of aT2lnT term in xs in
d53, which is accidental. The remainder of this paper is
organized as follows. In Sec. II we define our model. In Sec.
III we perform an explicit perturbative calculation to second
order in the electron-electron interaction. This confirms both
our qualitative arguments, and the results of Ref. 13. We
explain why there is no contradiction between these results,
and we also make contact with established perturbative re-
sults ind51. In Sec. IVA we discuss our result in the light
of mode-mode coupling arguments that are an elaboration of
those given above. In Sec. IVB we make contact with
renormalization-group ideas, and argue that the functional
forms of the nonanalyticities derived in Sec. III by means of
perturbation theory are asymptotically exact. In Sec. IVC we
discuss the physical consequences of our results.

II. MODEL, AND THEORETICAL FRAMEWORK

A. The model

Let us consider a system of clean fermions governed by
an action18

S52E dx(
s

c̄s~x!
]

]t
cs~x!1S01Sint . ~2.1a!

Here we use a four-vector notation,x[(x,t), and
*dx[*dx*0

bdt. x denotes position,t imaginary time,
b51/T, and we choose units such that\5kB51. s is the
spin label.S0 describes free fermions with chemical potential
m,
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S05E dx(
s

c̄s~x!@D/2m1m#cs~x!, ~2.1b!

with D the Laplace operator, andm the fermion mass.Sint
describes a two-particle, spin-independent interaction,

Sint52
1

2E dx1dx2 (
s1 ,s2

v~x12x2!

3c̄s1
~x1!c̄s2

~x2!cs2
~x2!cs1

~x1!. ~2.1c!

The interaction potentialv(x) will be specified in Sec. II B
below.

We now Fourier transform to wave vectorsk and fermi-
onic Matsubara frequenciesvn52pT(n11/2). Later we
will also encounter bosonic Matsubara frequencies, which
we denote byVn52pTn. Using again a four-vector nota-
tion, k[(k,vn), (k[T( ivn

*dk/(2p)d, we can write

S05(
s

(
k

c̄s~k!@ ivn2k2/2m1m#cs~k!, ~2.2a!

Sint5
2T

2 (
s1 ,s2

(
$ki %

dk11k2 ,k31k4
v~k22k3!

3c̄s1
~k1!c̄s2

~k2!cs2
~k3!cs1

~k4!. ~2.2b!

For the long-wavelength, low-frequency processes we will
be interested in, only the scattering of particles and holes
close to the Fermi surface is important. It is customary and
convenient to divide these processes into three classes:19 ~1!
small-angle scattering,~2! large-angle scattering, and~3!
2kF scattering. These classes are also referred to as the
particle-hole channel for classes~1! and~2!, and the particle-
particle or Cooper channel for class~3!, respectively. The
corresponding scattering processes are schematically de-
picted in Fig. 1. For our purposes it is convenient to make

the phase-space decomposition that is inherent to this classi-
fication explicit by writing the interaction part of the action,

Sint5Sint
~1!1Sint

~2!1Sint
~3!, ~2.3a!

where

Sint
~1!5

2T

2 (
s1 ,s2

(
k,p

( 8
q

v~q!c̄s1
~k!

3c̄s2
~p1q!cs2

~p!cs1
~k1q!, ~2.3b!

Sint
~2!5

2T

2 (
s1 ,s2

(
k,p

( 8
q

v~p2k!c̄s1
~k!c̄s2

~p1q!

3cs2
~k1q!cs1

~p!, ~2.3c!

Sint
~3!5

2T

2 (
s1Þs2

(
k,p

( 8
q

v~k1p!c̄s1
~k!c̄s2

~2k1q!

3cs2
~p1q!cs1

~2p!. ~2.3d!

Here the prime on theq summation indicates that only mo-
menta up to some cutoff momentumL are integrated over.
This restriction is necessary to avoid double counting, since
each of the three expressions, Eqs.~2.3b!–~2.3d!, represents
all of Sint if all wave vectors are summed over. The long-
wavelength physics we are interested in will not depend on
L.

The above phase-space decomposition is correct in di-
mensionsd>2. In d51, the Fermi surfaces collapse onto
two Fermi points, and the processes we called above large-
angle scattering and 2kF scattering become indistinguish-
able. The three independent scattering processes are usually
chosen as the ones shown in Fig. 2, and the corresponding
coupling interaction potentials are denoted byg1, g2, and
g4.

15 Inspection shows that the action written in Eqs.~2.3!
counts each of these processes twice. IfSint

(3) is dropped, then
the g4 process is still counted twice. However, it is known
that g4 does not contribute to the logarithmic terms we are
interested in.15 For our purposes it therefore is sufficient to
just drop the particle-particle channel when we are dealing
with d51.

FIG. 1. Typical small-angle ~1!, large-angle ~2!, and
2kF-scattering processes~3! near the Fermi surface ind52.

FIG. 2. The three independent scattering processes near the
Fermi surface with interaction amplitudesg1, g2, andg4 in d51.
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B. Simplifications of the model

The effective interaction potentials that appear in Eqs.
~2.3b!–~2.3d! are all given by the basic potentialv, taken at
different momenta.Sint

(1) contains the direct scattering contri-
bution, or v(q), with q the restricted momentum. Ifv is
chosen to be a bare Coulomb interaction, then this leads to
singularities in perturbation theory inv that indicate the need
for infinite resummations to incorporate screening. For sim-
plicity, we assume that this procedure has already been car-
ried out, and takev to be a statically screened Coulomb
interaction. For effects that arise from small values ofuqu it is
then sufficient to replace v(q) by the number
G1[v(q→0).20 In Eqs. ~2.3c! and ~2.3d! the moduli ofk
andp are equal tokF for the dominant scattering processes,
and one usually expands these coupling constants in Leg-
endre polynomials on the Fermi surface. While all of the
terms in this expansion contribute to the processes we want
to study, we note that the coefficients in the angular momen-
tum expansion are independent coupling constants. In order
to establish the existence of a nonanalytic term inxs(Q), it
therefore is sufficient to establish its existence in a particular
angular momentum channel. For simplicity we choose the
zero angular momentum channel,l50. We then have three
coupling constants in our theory, namely,G1, G2, andG3,
which arev(k2p) andv(k1p), respectively, averaged over
the Fermi surface. Instead ofG1 andG2 one often uses the
particle-hole spin singlet and spin triplet interaction ampli-
tudesGs andG t that are linear combinations ofG1 andG2.
They are related to the Fermi-liquid parametersF0

s andF0
a by

Gs5G12G2/25
1

2NF

F0
s

11F0
s , ~2.4a!

G t5G2/25
21

2NF

F0
a

11F0
a , ~2.4b!

whereNF is the density of states at the Fermi level. Our
simplified model is tantamount to taking onlyF0

s andF0
a into

account instead of the complete sets of Landau parameters.
As explained above, this is sufficient for our purposes. We
also define the Cooper channel amplitude,

Gc5G3/2, ~2.4c!

and again we keep only thel50 channel. The particle-
particle channel is neglected in Landau theory.

Our model is now defined as Eqs.~2.2! and ~2.3!, with
v(q), v(p2k), and v(k1p) replaced byG1, G2, and G3,
respectively. We thus have three different interaction verti-
ces, which are shown in Fig. 3. In the following section we
will calculate xs in perturbation theory with respect to the
interaction amplitudesG1, G2, andG3.

III. PERTURBATION THEORY

A. Contributions to second order in the interaction

We now proceed to calculate the spin susceptibilityxs in
perturbation theory with respect to the electron-electron in-
teraction. This can be done by means of standard
methods.21,22,19We will be interested only in contributions
that lead to a nonanalytic wave-number dependence. It is

easy to see that no nonanalytic behavior can occur at first
order in the interaction. At second-order, there is also a large
number of diagrams for which this is true, and others vanish
due to charge neutrality.20 There remain seven topologically
different second-order diagrams, all shown in Fig. 4, that
need to be considered. We thus write

xs~Q!52x0~Q!1(
i51

7

x~ i !1~analytic contributions!,

~3.1!

wherex0 denotes the Lindhard function, and the correction
terms are labeled according to the diagrams in Fig. 4. Here

FIG. 3. The three interaction vertices with coupling constants
G1, G2, andG3.

FIG. 4. Second order diagrams that contribute to the nonanalytic
behavior ofxs . The solid vertical line denotes the external spin
vertexs.
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and in the remainder of this section we use again the four-
vector notation of Sec. II, soQ[(Q,Vn), etc.

These diagrams can be expressed in terms of integrals
over electronic Green’s functions, or bare electron propaga-
tors, that can be read off Eq.~2.2a!,

Gk[Gk~ ivn!5
1

ivn2k2/2m1m
. ~3.2!

In terms of theGk , we find

x~1!524G1G2(
s

s2( 8
q

J1
~4!~q,Q!J~2!~q!, ~3.3a!

x~2!522G1G2(
s

s2( 8
q

$@J~3!~q,Q!#2

1J2
~4!~q,Q!J~2!~q!%, ~3.3b!

x~3!522G1G2(
s

s2( 8
q

J~3!~q,Q!J~3!~2q,2Q!,

~3.3c!

x~4!5~G3!
2 (

s1 ,s2
s1s2~12ds1s2

!( 8
q

I 1
~3!~q,Q!I 2

~3!~q,Q!,

~3.3d!

x~5!5~G3!
2 (

s1 ,s2
s1s2~12ds1s2

!( 8
q

I 2
~4!~q,Q!I ~2!~q!,

~3.3e!

x~6!52 (
s1 ,s2

s1
2( 8

q
@~G1!

2J1
~4!~q,Q!1~G2!

2

3J1
~4!~2q,Q!#J~2!~2q!12~G3!

2

3 (
s1 ,s2

s1s2~12ds1s2
!( 8

q
I 1

~4!~q,Q!I ~2!~q!,

~3.3f!

x~7!5 (
s1 ,s2

s1
2( 8

q
$~G1!

2J2
~4!~q,Q!J~2!~q!1~G2!

2

3@J~3!~2q,Q!#2%2x~4!. ~3.3g!

Here q is a bosonic frequency-momentum integration vari-
able. In Eqs.~3.3!, the following multiplication factors have
been taken into account. In diagram~1! of Fig. 4, either one
of the interaction lines can be aG1; the other one is then
necessarily aG2. This leads to a multiplication factor of 2,
and another factor of 2 comes from the existence of an
equivalent symmetric diagram. In diagram~2!, again either
one of the two interaction lines can be aG1, with the other
line then being aG2, but here the two expressions one ob-
tains are not identical. Again, there is an overall symmetry
factor of 2. The same holds for diagram~3!, but without the
overall symmetry factor. Diagrams~4! and ~5! can be real-
ized only withG3, and they carry no multiplication factors.
In diagrams~6! and ~7!, both interaction lines must be the
same, and diagram~6! carries an extra symmetry factor of
2. The spin structures represent the fact that the interaction

cannot flip the spin, and that the external vertex carries a
factor ofs. The functions in the integrands of Eqs.~3.3! are
defined as

J~2!~q!5(
k
GkGk2q , ~3.4a!

J~3!~q,Q!5(
k
GkGk2qGk2Q , ~3.4b!

J1
~4!~q,Q!5(

k
~Gk!

2Gk2qGk2Q , ~3.4c!

J2
~4!~q,Q!5(

k
GkGk2qGk2QGk2q2Q , ~3.4d!

I ~2!~q!5(
k
GkG2k1q , ~3.4e!

I 1
~3!~q,Q!5(

k
G2kGk1qG2k2Q , ~3.4f!

I 2
~3!~q,Q!5(

k
GkG2k1qG2k1q2Q , ~3.4g!

I 1
~4!~q,Q!5(

k
~Gk!

2G2k1qGk2Q , ~3.4h!

I 2
~4!~q,Q!5(

k
GkG2k1qGk1QG2k1q2Q . ~3.4i!

The information we are interested in is contained in Eqs.
~3.1!–~3.4! in terms of integrals. The remaining task is to
perform these integrals. While it is easy to see by power
counting that all of the above contributions toxs do indeed
scale likeQd21 for 1,d,3, and likeO(1) andO(Q2) with
logarithmic corrections ind51 andd53, respectively, we
have found it impossible to analytically perform the integrals
in general, i.e., for a finite external wave number in arbitrary
dimensionsd. However, for a perturbative confirmation of
the expected nonanalyticity such a general analysis is not
necessary. Rather, it is sufficient to explicitly obtain the pref-
actors of the logarithmic singularities ind51 andd53. If
they are not zero, then by combining this with power count-
ing and the expected continuity ofxs as a function ofd, it
follows that the prefactor of theQd21 nonanalyticity does
not vanish for generic values ofd either. For the temperature
dependence atQ50 the integrals can be done in arbitrary
d, see Sec. III E below.

In Secs. III B–IIID we therefore analyze the above inte-
grals ind51 andd53. In doing so, we treat the particle-
hole and particle-particle channel contributions separately,
since they have quite different structures. We also anticipate
that we will be interested only in the static spin susceptibil-
ity, so Q5(0,Q). In d51, we write Q for the one-
dimensional vector, i.e., a real number that can be either
positive or negative.
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B. d51

Let us first considerd51. We do this mainly to make
contact with established results in the literature. As explained
above, the particle-particle channel must not be taken into
account ind51, so we putG350. Since we are interested in
a logarithm that results from an infrared singularity, it suf-
fices to calculate the integrands in the limit of small frequen-
cies and wave numbers. Be performing the integrals in Eqs.
~3.4a!–~3.4d! one obtains, withQ5(0,Q) andq5(Vn ,q),

J~2!~q!5
2NF

11~Vn /vFq!2
, ~3.5a!

J~3!~q,Q!5NFF iVnq/Q

Vn
21~vFq!2

1
iVn~Q2q!/Q

Vn
21@vF~Q2q!#2G ,

~3.5b!

J1
~4!~q,Q!5NFF qQ ~vFq!22Vn

2

@Vn
21~vFq!2#2

2
q/Q

Vn
21~vFq!2

1
q2/Q2

Vn
21~vFq!2

2
~Q2q!2/Q2

Vn
21@vF~Q2q!#2

G ,
~3.5c!

J2
~4!~q,Q!5NFF2

2q2/Q2

Vn
21~vFq!2

1
~q2Q!2/Q2

Vn
21@vF~q2Q!#2

1
~q1Q!2/Q2

Vn
21@vF~q1Q!#2G . ~3.5d!

Inserting this into Eqs.~3.3!, performing the final integrals,
and collecting the results one obtains, apart from analytic
terms,

xs~Q!52NF24NF~G tNF!2ln~2kF /uQu!. ~3.6!

This result agrees with the well-known one to this order in
G t .

14 One would expect that the lnuQu gets replaced by a
lnV or lnT if one works atQ50 and finiteV or T, respec-
tively. Explicit calculations confirm this. Of course the
physical content of this perturbative result is limited, since
the ground state is not a Fermi liquid.23 For later reference
we also mention that, to logarithmic accuracy, it is not nec-
essary to keepQ nonzero in the above calculation. If one
works atQ50 and determines the prefactor of the resulting
logarithmic divergence, then one obtains the same result as
above.

C. Particle-hole channel ind53

In d53, both the particle-hole and the particle-particle
channel contribute to the terms we are interested in. Since
the structures of the integrals in the two channels are quite
different, we first consider the particle-particle channel. In
d53, the logarithm appears only atO(Q2). KeepingQ ex-
plicitly in the integrals to that order would be hard. However,
as was pointed out in the preceding subsection, to logarith-
mic accuracy this is not necessary. Rather, we can just ex-
pand inQ. The prefactor of theQ2 term will then be loga-
rithmically divergent, and the prefactor of the divergence
will be the same as that of theQ2lnuQu term whose presence

is signaled by the divergence. By expanding Eqs.~3.4b!–
~3.4d! toO(Q2), and dropping the uninteresting contribution
to the homogeneousxs , we can express all logarithmic con-
tributions toxs in terms of two integrals,

J15( 8
q (

k
S k•Q̂
m

D 2~Gk1q!
5Gk(

p
GpGp2q

5SNFvF
24

D 2(
q

1

~vFuqu!3
, ~3.7a!

J25
1

4( 8
q (

k
S k•Q̂
m

D 2~Gk!
4Gk2q(

p
~Gp!

2Gp1q52J1 ,

~3.7b!

where we have kept only the most divergent term. We find

x~1!528G1G2Q
2J1 , ~3.8a!

x~2!524G1G2Q
2~J11J2!50, ~3.8b!

x~3!528G1G2Q
2J2 , ~3.8c!

x~6!58~G1
21G2

2!Q2J1 , ~3.8d!

x~7!58Q2~2G1
2J12G2

2J2!. ~3.8e!

Here we have used the fact that the structure (J(3))2 that
appears inx (2), x (3), and x (7), if expanded to orderQ2,
yields two terms, one of which gets canceled by parts of the
other. The remaining contribution can be expressed in terms
of J2.

We see that in the skeleton diagrams,x (1)–x (3), self-
energy contributions and vertex corrections cancel each
other. However, in the insertion diagrams,x (6) andx (7), the
same cancellation is effective only in the spin singlet chan-
nel, while in the spin triplet channel the two diagrams add
up. Interpreting the logarithmic divergence inJ1 as a lnuQu as
explained above, we obtain for the particle-hole channel con-
tribution toxs ,

xs
p-h52NF12NF~G tNF!2

4

9S Q

2kF
D 2ln~2kF /uQu!. ~3.9!

D. Particle-particle channel in d53

We now turn our attention to the particle-particle channel.
As can be seen from Sec. II A, diagrams~4!–~7! in Fig. 4
contribute. From Eqs.~3.3d! and ~3.3g! it follows that the
particle-particle channel contributions of diagrams~4! and
~7! cancel each other, so we are left withx (5) and x (6).
Expanding the functionsI 1

(4) andI 2
(4) , Eqs.~3.4h! and~3.4i!,

to orderQ2 and doing the integrals, one finds that the leading
logarithmic contributions to bothx (5) and x (6) can be ex-
pressed in terms of a single integral,

I5( 8
q (

k
S k•Q̂
m

D 2~Gk!
5G2k1q(

p
GpG2p1q .

~3.10!

55 9457NONANALYTIC BEHAVIOR OF THE SPIN . . .



Inspection of the integrand shows that the leading diver-
gency inI is a logarithm squared, in contrast to the particle-
hole channel, where the leading term is a simple logarithm.
The reason is that(pGpG2p1q contains a term; lnuqu for
q→0, which is just the usual BCS-type logarithm that is
characteristic of the particle-particle channel. It also depends
on an ultraviolet cutoff, since(pGpG2p1q does not exist in
d53 if the integration is extended to infinity. In conjunction
with the other factor in the integrand ofI , which is an alge-
braic function, this gives the leading behavior:

I;E dqlnuqu E
0

`

dv
q223~v/vF!2

@q21~v/vF!2#3
. ~3.11!

While this diverges like (ln0)2 by power counting, the pref-
actor of the divergency turns out to be zero since the fre-
quency integral in Eq.~3.11! vanishes. This leads to the fol-
lowing conclusion for the particle-particle channel
contribution toxs :

xs
p-p52NF12NF~GcNF!2$03@ ln~2kF /uQu!#2

1O@ ln~2kF /uQu!#%. ~3.12!

Our method of expanding in powers ofQ, and extracting
the prefactor of the ensuing singularity, works only for the
leading nonanalytic contribution. With this method, there-
fore, the result that is expressed in Eq.~3.12! is all we can
achieve. In order to determine the prefactor of the next-
leading lnuQu term, one would have to keep a nonzero exter-
nal wave number explicitly. As pointed out before in the
context of the particle-particle channel, this would be very
difficult. However, for our purposes this is not really neces-
sary. We know that the interaction amplitudes in the particle-
hole and particle-particle channels, respectively, are indepen-
dent. Therefore, the particle-particle channel contribution
cannot in general cancel the nonzero contribution from the
particle-hole channel that we found in Sec. IIIC. What we
have established is that the particle-particle channel is not
more singular than the particle-hole channel, and for show-
ing that the leading nonanalyticity inxs is lnuQu with a non-
zero prefactor this is sufficient.

It should be pointed out that low-order perturbation theory
probably overestimates the importance of the particle-
particle channel. Usually, singularities in the particle-particle
channel are logarithmically weaker than those in the particle-
hole channel, since a BCS-type ladder resummation changes
a lnx singularity into a lnlnx, and axy singularity into a
xy/ lnx. We expect this mechanism to work in the present
problem, so the particle-particle channel singularities are
probably in fact asymptotically negligible compared to the
particle-hole channel ones. We also note that so far we have
not really established that higher-order terms in the perturba-
tion expansion cannot lead to stronger singularities than the
ones we found at second order in the interaction amplitudes.
This point will be further discussed in Sec. IV below.

E. Temperature dependence ofxs„Q50…

In the last two subsections we have established thatxs in
d53 at T50 does indeed have a nonanalytic contribution
proportional toQ2lnuQu. As we pointed out in the Introduc-

tion, in a Fermi liquid the wave number scales like frequency
or temperature, and one would therefore naively expect a
T2lnT contribution to the homogeneousxs at T.0. This
raises the question of whether our results are compatible with
those of Carneiro and Pethick,13 who did not find such a
contribution. In order to clarify this, let us calculate
xs(Q50,T) explicitly within our formalism. For the reasons
explained in Sec. IIID we restrict ourselves to the particle-
hole channel, as did Ref. 13.

To this end, we putQ50 in Eqs.~3.4a!–~3.4d!, and con-
sider the temperature dependence ofx (1)–x (3), x (6), and
x (7). The relevant integrals are of the structure,

E dqq2T(
iVn

f ~q,iVn!g~q,iVn!, ~3.13!

which are most conveniently done by using the spectral rep-
resentation for the causal functionsf (q,iVn) and
g(q,iVn).

22 Simple considerations show that there is no
T2lnT term if both f andg are algebraic functions; only if at
least one of them possesses a branch cut can such a nonana-
lyticity arise. This immediately rules outx (3), and the first
and second contribution tox (2) and x (7), respectively, as
sources for aT2lnT. The reason is that an explicit calculation
of J(3)(q,Q50), Eq. ~3.4b!, in the limit of smallq shows
that the only singularities in this function are poles. The
same is true forJ1

(4)(q,Q50) and J2
(4)(q,Q50), but

J(2)(q), which is minus the Lindhard function, has a branch
cut, and so all of the remaining terms potentially go like
T2lnT.

Since again we are aiming only at logarithmic accuracy,
we can replaceJ1

(4)(q,Q50) and J2
(4)(q,Q50) by low-

frequency, long-wavelength expressions for which
J2
(4)(q,Q50)522J1

(4)(q,Q50). The contributions from
x (1) andx (2) therefore cancel@remember that diagrams~1!
and~2! in Fig. 4 carry multiplication factors 4 and 2, respec-
tively#. The contributions fromx (6) and x (7) can both be
expressed in terms of an integral

J5E dqq2T(
iVn

J1
~4!~q,Q50!J~2!~q!. ~3.14!

In doing this integral one may encounter individual terms
that go likeT2lnT, but all of those terms cancel, and the
leadingT dependence ofJ is T2. There hence isno T2lnT
contribution toxs in d53.

This result agrees with the conclusion of Ref. 13, which
reached it on the basis of Fermi-liquid theory. We disagree,
however, with the assertion of that reference that within the
framework of microscopic perturbation theory the absence of
theT2lnT is due to cancellations between vertex corrections
and self-energies, and is hence a consequence of gauge in-
variance. What we find instead is that, for all diagrams in
Fig. 4, theT2lnT terms vanish individually. This is consistent
with the result of Ref. 24. These authors calculatedxs in
paramagnon approximation, which in our language corre-
sponds to taking onlyx (6) andx (7) into account, plus infinite
resummations that contribute to higher orders in the interac-
tion amplitudes. They reported the absence ofT2lnT terms in
their calculation, rather than their cancellation between the
two diagrams.
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This absence of the expected nonanalyticT dependence in
d53 is somewhat accidental. This can be seen from the
one-dimensional case, where, as pointed out in Sec. III B,
there is a lnT contribution to the homogeneous spin suscep-
tibility. The technical reason is that ind51, integrands
whose only singularities are poles do contribute to the
T2lnT terms. Consequently, ind51 T and Q are inter-
changeable in the logarithmic terms, while ind53 they are
not. Furthermore, the same types of integrals that lead to a
lnT term ind51 also contribute to aTd21 nonanalyticity in
1,d,3. In these dimensions we therefore expect to find

xs
p-h~Q50!52NF12NF~G tNF!2cd~T/4eF!d21,

~3.15!

with cd a d-dependent, positive number.
We also mention that the absence of aT2lnT term in the

self-energy diagrams ind53 does not contradict the pres-
ence of such a term in the specific-heat coefficient. The re-
lation between the specific heat and the Green’s function is
intricate,22 and the resulting integrals have a different struc-
ture from the ones that determinexs .

IV. DISCUSSION

A. Our results in a mode-mode coupling theory context

In this section we give a more detailed look at the mode-
mode coupling arguments that were presented in the Intro-
duction. We also stress some analogies between classical and
quantum fluids, and discuss some important differences be-
tween clean and disordered systems.

Let us consider four distinct systems:~1! a classical Lor-
entz model~i.e., a classical particle moving in a spatially
random array of scatterers25!, ~2! a classical fluid,~3! a Fermi
liquid with static impurities, and~4! a clean Fermi liquid.
These systems represent classical and quantum fluids with
and without quenched disorder, respectively. As pointed out
in the Introduction, dynamical correlations are ultimately re-
sponsible for all of the effects discussed in this paper. How-
ever, in classical systems they do not manifest themselves in
static equilibrium properties, while in quantum systems they
do. In order to discuss the analogies between classical and
quantum systems, let us therefore digress and consider an
equilibrium time correlation function. A convenient choice is
the current-current correlation function, whose Fourier trans-
form determines the frequency-dependent diffusivityD(V).
In both of the classical systems,~1! and ~2!, this correlation
function exhibits a long-time tail, soD(V) is nonanalytic at
V50. ForV→0 one finds for the classical Lorentz model,

D~V!/D~0!511aiV1b~ iV!d/2, ~4.1a!

while for the classical real fluid one finds

D~V!/D~0!512b8~ iV!~d22!/2. ~4.1b!

The coefficientsb and b8 in Eqs. ~4.1! are positive. The
long-time tail in the real fluid is stronger than the one in the
Lorentz gas because the former has more soft modes. More
importantly, the static scatterers in the Lorentz gas lead to a
sign of the effect that is different from the one in the real
fluid. All of these features can be understood in terms of the

number and the nature of the soft modes in these systems.2 In
disordered Fermi liquids5 one has

D~V!/D~0!511b9~ iV!~d22!/2, ~4.1c!

with b9.0. Here the sign is the same as in the classical
Lorentz model, which is due to the quenched disorder in
either system. The strength of the long-time tail, however, is
equal to that in the classical real fluid. As mentioned in Sec.
I, the coupling of statics and dynamics in quantum statistical
mechanics leads to a related nonanalyticity in the static spin
susceptibility of a disordered Fermi liquid, namely,

xs~Q!/xs~0!512cuQud22, ~4.2!

with c.0.
On the basis of these results, it is possible to predict both

the strength of the singularity, and the sign of the prefactor,
in theQ dependence ofxs in a clean Fermi liquid, which is
what we are mainly concerned with in this paper. In order to
do so, let us recall the origin of the nonanalyticity in the
classical fluid, Eq.~4.1b!. The density excitation spectrum,
i.e., the dynamical structure factor as measured in a light-
scattering experiment, in a classical fluid consists of three
main features: the Brillouin peaks that describe emission and
absorption of sound waves, and the Rayleigh peak that de-
scribes heat diffusion. For our purposes, we focus on the
former. In the density-density Kubo correlation function,
C(k,v) @whose spectrum is in a classical system simply pro-
portional to the structure factorS(k,v)#, they manifest them-
selves as simple poles,3

C~k,v!;
1

v2vk1 igk2/2
1

1

v1vk2 igk2/2

[C1~k,v!1C2~k,v!, ~4.3!

wherev is the speed of sound, andg is the sound attenuation
constant. Now let us consider the simplest possible mode-
mode coupling process that contributes to Eq.~4.1b!,
namely, one where a current mode decays into two sound
modes that later recombine; see Fig. 5. Consider a process
where one of the internal sound propagators is aC1 , and the
other aC2 . At zero external wave number, this leads to a
convolution integral,

FIG. 5. Mode-mode coupling process describing the decay of a
current mode~dashed line! into two sound modes~solid lines!.
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E dvE dkC1~k,v!C2~2k,2v1V!

;E dk
1

V1 igk2
;V~d22!/2. ~4.4a!

Note that by this mechanism the long-time tail in a system
whose low-lying modes have a linear dispersion becomes as
strong as the one in a system with diffusive modes. In con-
trast, if both of the sound propagators areC1 or C2 , one
obtains a weaker singularity,

E dVE dkC1~k,v!C1~2k,2v1V!

;E dk
1

V22vk1 i0
;V~d21!. ~4.4b!

Now let us consider the corresponding quantum system, i.e.,
the clean Fermi liquid. Again, the low-lying modes~i.e.,
particle-hole excitations! have a linear dispersion. However,
at zero temperature the structure factor and the Kubo func-
tion are no longer proportional to one another. Rather, the
fluctuation dissipation theorem shows that they are related by
a Bose distribution function that eliminates the pole at
v5ck from the structure factor. This is simply a conse-
quence of the fact that at zero temperature there are no ex-
citations that could get destroyed in a scattering process.
Consequently, the process described by Eq.~4.4a! is not
available in this system, and one is left with the weaker
singularity of Eq.~4.4b!. Since the diffusion coefficient is
infinite atT50 in a clean system, we look instead at the spin
susceptibility as a function ofQ. Q scales likeV, so we
expect a singularity of the formuQud21, as opposed to the
uQud22 in a disordered Fermi liquid, Eq.~4.2!. The sign of
the prefactor is determined by whether or not the system
contains quenched disorder. It should therefore be opposite
to the sign in the dirty case. We thus expect for the wave
number dependence of the spin susceptibility in a clean
Fermi liquid,

xs~Q!/xs~0!511c8uQud21, ~4.5!

with c8.0. This is precisely what we found in Sec. III by
means of perturbation theory. Notice that the mode-mode
coupling arguments suggest that the sign of the prefactor
c8 will be positive, regardless of the interaction strength, as
is the sign of the long-time tail in a classical fluid. We will
come back to this point in Sec. IVC below.

B. Our results in a renormalization-group context

Another useful way to look at our results is from a
renormalization-group point of view. The Fermi-liquid
ground state of interacting fermion systems ind.1 has re-
cently been identified with a stable fixed point in
renormalization-group treatments of both a basic fermion
theory,16 and a bosonized version of that theory.26 The insta-
bility of the Fermi liquid ind51 is reflected by an infinite
number of marginal operators whose scale dimensions are
proportional to d21, i.e., they all become relevant in
d,1, and are irrelevant ind.1. In the present context, the
Fermi-liquid nature of the ground state ind.1 is reflected

by the fact that the homogeneous spin susceptibility is finite
in perturbation theory. The nonanalytic corrections at finite
wave number that we are interested in correspond to the
leading correction to scaling in the vicinity of the Fermi-
liquid fixed point, i.e., to an irrelevant operator with respect
to that fixed point. Among the irrelevant operators, there thus
must be one whose scale dimension determines the leading
wave-number dependence of the spin susceptibility.

An identification of this operator within the framework of
a renormalization-group analysis would not only provide an-
other derivation of our result, but would also establish that
the behavior we have found in perturbation theory consti-
tutes the leadingQ dependence toall orders in the interac-
tion amplitudes. This program has not been carried out yet,
although preliminary results are encouraging.17 This will
provide a connection between the mode-mode coupling ar-
guments presented in the previous subsection and
renormalization-group arguments that will be analogous to a
corresponding connection in classical fluids that has been
known to exist for some time.4

In this context it should also be mentioned that there is no
universal agreement that the ground state of a weakly inter-
acting Fermi system ind.1 is a Fermi liquid. It has been
proposed that there exists a relevant operator that makes the
Fermi-liquid fixed point unstable, and leads to a non-Fermi-
liquid ground state.27 In order to destroy the Fermi liquid in
d dimensions, this would require a long-range effective in-
teraction that falls off more slowly than 1/r d at large dis-
tances. While we do find an effective long-range interaction
between the spin degrees of freedom, it falls off like
1/r 2d21, and hence leaves the Fermi-liquid fixed point intact.
The same conclusion was reached in Ref. 11 from studying
the specific heat ind52.

C. Summary, and physical consequences of our result

We finally turn to a summary of our results, and to a
discussion of their physical consequences. By means of ex-
plicit perturbative calculations to second order in the inter-
action, we have found that the wave-number-dependent spin
susceptibility ind53 has the form

xs~Q!/xs~Q50!511c3~Q/2kF!2ln~2kF /uQu!1O~Q2!.
~4.6a!

We have calculated the particle-hole channel contribution to
the constantc3, and have found it to be positive. More gen-
erally, it follows from our analysis that ind-dimensional
systems, the spin susceptibility has a nonanalyticity of the
form

xs~Q!/xs~Q50!511cd~ uQu/2kF!d211O~Q2!,
~4.6b!

where the particle-hole channel contribution tocd is again
positive.

A very remarkable feature of Eqs.~4.6! is the sign of the
leadingQ dependence: Ford<3, xs increaseswith increas-
ing uQu like uQud21. For any physical system for which this
were the true asymptotic behavior at smallQ, this would
have remarkable consequences for the zero-temperature
phase transition from the paramagnetic to the ferromagnetic
state as a function of the exchange coupling. One possibility
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is that the ground state of the system will not be ferromag-
netic, irrespective of the strength of the spin triplet interac-
tion, since the functional form ofxs leads to the instability of
any homogeneously magnetized ground state.28 Instead, with
increasing interaction strength, the system would undergo a
transition from a paramagnetic Fermi liquid to some other
type of magnetically ordered state, most likely a spin density
wave. While there seems to be no observational evidence for
this, let us point out that ind53 the effect is only logarith-
mic, and would hence manifest itself only as a phase transi-
tion at exponentially small temperatures, and exponentially
large length scales, that might well be unobservable. For
d<2, on the other hand, there is no long-range Heisenberg
ferromagnetic order at finite temperatures, and the sugges-
tion seems less exotic. Furthermore, any finite concentration
of quenched impurities will reverse the sign of the leading
nonanalyticity, and thus make a ferromagnetic ground state
possible again.

Another possibility is that the zero-temperature
paramagnet-to-ferromagnet transition is of first order. It has
been shown in Ref. 9 that the nonanalyticity inxs(Q) leads
to a similar nonanalyticity in the magnetic equation of state,
which takes the form

tm2vdm
d1um35h, ~4.7!

with m the magnetization,h the external magnetic field, and
u.0 a positive coefficient. If the soft mode mechanism dis-
cussed above is the only mechanism that leads to nonanaly-
ticities, then the sign of the remaining coefficientv in Eq.
~4.7! should be the same as that ofcd in Eq. ~4.6b!, i.e.,
vd.0. This would imply a first-order transition for
1,d,3. In this case the length scale that in the previous
paragraph would have been attributed to a spin density wave
would instead be related to the critical radius for nucleation
at the first-order phase transition. Further work will be nec-
essary to decide between these possibilities.

The conclusion that there is no continuous zero-
temperature paramagnet-to-ferromagnet transition is inescap-
able for any system with a particle-hole channel interaction
that is sufficiently weak for our perturbative treatment to be
directly applicable. An important question is now whether or
not it holds more generally for systems whose interactions
are in general not weak. There are four obvious mechanisms
by which the sign of the leadingQ dependence ofxs could
be switched from positive to negative:~1! higher-order con-
tributions could lead to a sign ofcd for realistic interaction
strengths that is different from the one for weak interactions,
or ~2! they might lead to a stronger singularity with a nega-
tive prefactor that constitutes the true long-wavelength
asymptotic behavior, or~3! the particle-particle channel con-

tribution might have a negative sign that overcompensates
the positive contribution from the particle-hole channel, or
~4! the higher angular momentum channels that we neglected
might lead to a different sign. At this point, none of these
possibilities can be ruled out mathematically. However, from
a physical point of view none is very likely to occur. As we
have explained in Sec. IVA, both the functional form and the
sign of the nonanalyticity found in perturbation theory are in
agreement with what one would expect on the basis of a
suggestive analogy with classical fluids. Also, the
renormalization-group arguments sketched in Sec. IVB
make it appear likely that Eqs.~4.6! constitute the actual
asymptotic small-Q behavior of xs , although an actual
renormalization-group proof of this is still missing. This
makes the first two possibilities appear unlikely. The third
possibility is unappealing for two reasons. First, the effective
interaction in the particle-particle channel is typically much
weaker than the one in the particle-hole channel. The reason
is the characteristic ladder resummation that occurs in the
particle-particle channel if one goes to higher orders in per-
turbation theory. This leads to an effective interaction of the
‘‘Coulomb pseudopotential’’ type that is much weaker~typi-
cally by a factor of 5–10! than what low-order perturbation
theory seems to suggest.29 Second, that same resummation
weakens any singularity~cf. the discussion at the end of Sec.
IIID !, which probably makes the particle-particle channel
singularity subleading. Finally, the higher angular momen-
tum Fermi-liquid parameters are usually substantially
smaller than the ones atl50, which makes possibility~4!
unlikely, except possibly in particular systems.

If the sign of the nonanalyticity is, for some reason, nega-
tive at the coupling strength necessary for a ferromagnetic
transition to occur, at least in some systems, then in these
systems the quantum phase transition from a paramagnet to a
ferromagnet at zero temperature as a function of the interac-
tion strength will be a conventional continuous quantum
phase transition with an interesting critical behavior. This is
because the nonanalyticity inxs leads to an effective long-
range interaction between spin fluctuations, which in turn
leads to critical behavior that is not mean-field-like, yet ex-
actly solvable. This has been discussed recently in some
detail.9
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