Cascaded multilevel converters with non-integer or dynamically changing DC voltage ratios

Shuai Lu

Keith Corzine

University of Missouri--Rolla

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work

Part of the Electrical and Computer Engineering Commons

Recommended Citation

http://scholarsmine.mst.edu/faculty_work/961

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
Cascaded Multilevel Converters with Non-Integer or Dynamically Changing DC Voltage Ratios

Shuai Lu and Keith A. Corzine
Electrical and Computer Engineering Department, University of Missouri – Rolla, Missouri, USA
SL4xt@umr.edu and Keith@corzine.net

Abstract- Multilevel converters made of cascaded cells (MCCC) offer a high number of voltage levels with a given switch count. Many variants of the MCCC topology have been introduced over years. Mostly, only integer dc voltage ratios between the cascaded converter cells have been applied to its PWM modulation. This is mainly due to the non-uniform distribution of voltage vectors with the non-integer dc ratios. It poses difficulty to the conventional SVM modulators relying on locating the equilateral "triangle" made of three nearest vectors enclosing the reference vector. In this paper, an original modulation method is introduced to operate with any dc voltage ratio between cascaded converter cells, integer or non-integer; and even with a dynamically varying ratio; while the normal PWM output fast-average is not disrupted. The space vector analysis and the detailed simulations verify the modulation method.

The new concept of MCCC PWM with non-integer dc voltage ratio offers great flexibility in its practical operation, particularly in MCCC with single dc source where the auxiliary inverter cell dc-link capacitor voltage can be regulated at arbitrary value online. Its wide range of practical applications is briefly discussed in this paper.

I. INTRODUCTION

In summary, there are three major types of topologies for multilevel converter with cascaded converter cells (MCCC). Figs. 1 (a), (b) and (c) show the cascaded H-bridges, cascaded multilevel converters through split neutral load and the multilevel inverter in series with H-bridge cells, respectively. Given the same dc voltage ratio between the cascaded cells, all three topologies can provide the equivalent voltage levels with same IGBT switch count.

Recent developments in MCCC control methods witnessed two major trends. First is the hybrid operation between converter cells [1, 4, 5 and 8], where the main and auxiliary inverter cells operate at fundamental and PWM frequencies respectively. The other progress is in single dc source operation [4, 5 and 8], with only capacitor sources in auxiliary inverter. This greatly simplifies the converter dc front end complexity. Therefore, the topologies (b) and (c) are particularly preferable since only one isolated dc source is needed in the main converter cell (suppose diode clamped topology is used), while the topology (a) requires three of them.

The MCCC output performance (directly related to the number of voltage levels or layers of the voltage vectors in the hexagon patterns) depends on the dc-link voltage ratio between the main and auxiliary converter cells. The Fig. 2 shows the examples when two three-level converters are cascaded. As the voltage ratio increases, fewer voltage vectors overlap and there're more voltage vector positions available for the modulator, until the 4:1 ratio results in discontinuous vector pattern on the edge of the plot. So the voltage ratio 3:1 is called "maximal distortion" [6, 7], and its total voltage levels (layers of hexagon rings in plot) are the product of the level numbers of all cascaded converter cells. In this example, the maximal distension offers 9-level performance.

![Figure 1. The three major MCCC topologies.](image-url)
All integer dc ratios at or below maximal distension result in evenly distributed voltage vectors constituting the meshes of equilateral triangles. The 4:1 ratio is called “over-distension” [7], and for the m-index lower than the discontinuous region, it offers higher output resolution than “maximal distension”. At the voltage ratio beyond “over-distension”, like 5:1, the vector pattern becomes isolated “islands”, hence an invalid option for modulator. The non-integer voltage ratios between the MCCC cells can be used in the fundamental frequency switching (block switching) with Selective Harmonics Elimination (SHE) to achieve extra orders of harmonics elimination [9 and 10]. However, the non-integer ratio creates non-uniformly distributed vectors as in Fig. 2. The PWM modulator locating the enclosing equilateral triangle for the reference vector seems to be impossible. That is most likely the reason why there’s no previous report on the PWM with non-integer voltage ratio in MCCC.

The “hierarchical modulation” method is proposed to address this problem. The voltage vector plot of MCCC can be readily represented by the hierarchical organization of the switching states of the main and auxiliary inverter cells. Fig. 3(a) shows such an example with two cascaded 3-level converters at 3:1 dc voltage ratio. The heavy vector dots form a 3-level vector pattern representing all switching states of the main inverter. Each vector is then cascaded with complete enumeration of the auxiliary converter switching states, which forms a sub-hexagon designated by dotted line. The sub-hexagon dimension is 1/3 of the main hexagon. As voltage ratio changes (integer or non-integer value), the size of the sub-hexagon and the vectors distribution changes accordingly. As illustrated in Fig. 3(b) and (c), beneath the seemingly convoluted vector patterns at non-integer ratio, there’re still cascaded sub-hexagons made of meshes of equilateral triangles.

As in Fig. 3(c), any reference voltage vector \(v_{\text{ref}} \) can be decomposed into the combination of the nearby main cell vector \(v_{\text{main}} \) and the “relative reference vector” \(v_{\text{relative}} \) with the origin at \(v_{\text{main}} \). The problem is then hierarchically reduced to synthesizing \(v_{\text{relative}} \) within the 3-level sub-hexagon. Still in Fig. 3(c), suppose the \(v_{\text{ref}} \) and \(V_{\text{dc}} \) remains fixed; as the voltage ratio (or \(V_{\text{dc}} \)) changes, it could fall into a different triangle with its size changed as well. To trace its enclosing triangle with changing size, all the vector computations must use their actual values (instead of m-index) and the resulting \(v_{\text{relative}} \) is then transformed into the \(a-b-c \) coordinate to obtain the reference signal \(v_{\text{relative-phase_x per-phase}} \). The instantaneous auxiliary inverter dc voltage \(V_{\text{dc2}} \) measurement is updated every PWM cycle to compute the duty ratios for each phase leg according to the illustration in Fig. 3(d). Herein, the point ‘p’ is the a-phase reference value in certain PWM cycle. It is synthesized by 15% of state 1 and 85% of the state 0 in the auxiliary inverter a-phase (three level inverter with switching state 0, 1 and 2 in each phase).
maintained at zero by properly adjusting the main source mode, the net power into the auxiliary cell is to be as in [5]. For example, when MCCC operates at single dc distribution between the main and auxiliary inverter cells traversal pattern directly affects the power flow used in a fundamental cycle and their time duration. This traversal pattern, i.e. all the main inverter vectors to be locus. This process determines the main inverter vector to be applied at given reference vector position along its also needs to determine which main inverter cell vector is to be applied at given reference vector position along its locus. This process determines the main inverter vector traversal pattern, i.e. all the main inverter vectors to be used in a fundamental cycle and their time duration. This traversal pattern directly affects the power flow distribution between the main and auxiliary inverter cells as in [5]. For example, when MCCC operates at single dc source mode, the net power into the auxiliary cell is to be maintained at zero by properly adjusting the main inverter vector traversal pattern, so as to maintain its overall capacitor charges and \(V_{dc2} \).

III. THE NON-INTEGER VOLTAGE RATIO OPERATION
SPACE VECTOR ANALYSIS

Fig. 4 provides an insightful look at the non-integer voltage ratio PWM output using the proposed modulation method. The ratio 1.25:1 is used in the example. Its complete vector plot is in Fig. 3(b). The Fig. 4(a), (b) and (c) are the zoom-in illustrations of the modulation when the main inverter uses switching states 200, 210 and 220, respectively. The red circle represents the locus of the reference vector. The larger grey dots represent all switching states of the main inverter. Only the sub-hexagons affiliated with 200, 210 and 220 are shown here for clarity.

The line to line output voltage \(v_{ab} \) is usually shown as the indicator of the multilevel output performance. The resulting \(v_{ab} \) with the non-integer ratio has interesting pattern as shown in Fig. 4(d). In space vector view, \(v_{ab} \) is the ab-axis projections of all the voltage vectors used along the modulation path. The labels ('a' through 'g') along the ab-axis as shown in Fig. 4 (a), (b) and (c) represent such projections and also correspond to the labels in Fig. 4(d). The highlighted triangles are the ones used to synthesize the reference vector. From Fig. 4(a) to (c), there’re totally 11 such triangles used. When triangle 1 (belonging to the sub-hexagon 200) is used, the \(v_{ab} \) switches between level 'a' and 'b'; then it switches between 'b' and 'c', when triangle 2, 3, 4 are used. At certain point when the reference is going across the triangle 4, the main inverter switches to 210 and the triangle 5 in the new sub-hexagon will be used to synthesize the reference vector. The projections of triangle 5 and subsequent triangle 6 onto the axis-ab are between 'd' and 'e', then the triangle 7 is between 'e' and 'f'. These are corresponding to the \([d', e'], [e', f']\) segments in \(v_{ab} \) time domain waveform.

At certain point when the reference is in triangle 7, the main vector jumps to 220, and the triangle 8 is then used. Hence the \(v_{ab} \) will switch from segment \([e', f']\) to \([g', h']\) during this transition. The triangle 9, 10 and 11 are then used subsequently. The same space vector analysis is applicable for the whole fundamental circle of the reference vector.

The multilevel PWM output of MCCC with non-integer ratio does not have clear cut number of levels in its line to line voltage as in the case when the integer voltage ratio is used. \(v_{ab} \) waveform of non-integer ratio appears to have more levels. However, the THD is not lowered by more observable levels. The dominant PWM frequency harmonics magnitudes are approximately proportional to the size of the equilateral triangle.

IV. OPERATIONS WITH DIFFERENT M-INDEX OR DYNAMICALLY CHANGING VOLTAGE RATIO

The shape of the \(v_{ab} \) evolves with the main inverter vectors traversal pattern. In MCCC single DC source operation, the m-index directly affects the traversal pattern [5] and hence the \(v_{ab} \) output shape. A simulation
is given in Fig. 5 where the m-index is lower than the previous case and the main inverter vectors follow the star-shaped pattern as in Fig. 5(a). The resulting voltage waveforms as shown in Fig. 5(b) are different than the previous case. As the main inverter vector jumps from 201 to 110, the triangles labeled 1 (in red) and 2 (in blue), which belongs to the sub-hexagons originating from the vector 201 and 110, are used. Their projections onto the ab-axis are highlighted in v_{ab}. Despite the evolving shape of the MCCC output voltage envelope, its fast average is always correctly synthesized with the proposed modulation method, as verified by the sinusoidal phase voltage v_{fas} after the PWM filter.

The Fig. 6 shows the effectiveness of the proposed modulation method during the voltage ratio dynamic change. Herein, the voltage ratio is dynamically changed from 2:1 to 3:1 by commanding net power out of the auxiliary inverter which has only capacitor source. The
m-index (sinusoidal reference magnitude) is kept constant during the process. Initially, \(V_{dc} \) has 5-levels with the ratio 2:1. As \(V_{dc} \) decreases to 1/3 of the main inverter \(V_{dc} \) levels in \(V_{ab} \) increases to seven. It is instructive to observe the gradual transition of the \(V_{ab} \) waveform. The first trace in Fig. 6 shows the \(V_{ab} \) which is decreased from 210V to 140V (\(V_{dc} \) is 420V). The phase voltage fast average (trace 2 in Fig. 6) after PWM filter remains sinusoidal and not disrupted during dynamic voltage ratio transition.

V. CONCLUSION

In this paper, a new concept of the non-integer dc voltage ratio operation in MCCC PWM operation was introduced. The modulation method proposed offers the unique feature which enables the online change of the auxiliary inverter capacitor (dc-link) voltage without disrupting the MCCC output voltage. Obviously, this offers the wide range of practical application possibilities.

First, the new concept can be applied to the large hybrid electric vehicle or electric vehicle propulsion [14], where MCCC is used in the electric power train; the ultra-capacitor banks are directly installed across the auxiliary converter cell dc-link, and its state of charge can be regulated online at any value. This offers a unique way to manage the vehicle regenerative braking energy without using a dc-dc converter to interface the ultra-capacitor. Many technical details to implement and integrate this general concept with the vehicle motor drive are addressed in the literature [14].

Similarly, the concept can be easily adapted to other large motor drive systems with frequent braking and accelerations. Hereby, the regenerative braking energy can be stored for subsequent motor acceleration, which avoids a complicated inverter regenerative front-end design or braking resistor energy loss.

Furthermore, for any type of application using one of the topologies of the multilevel converter with cascaded cells, the proposed new concept will provide an efficient and simplified energy storage methodology to directly place the energy storage devices across the dc-link since the wide dc-link voltage variation will be transparent to the voltage output.

REFERENCES