High efficiency energy storage system design for hybrid electric vehicle with motor drive integration

Shuai Lu
Keith Corzine
University of Missouri--Rolla
Mehdi Ferdowsi
Missouri University of Science and Technology, ferdowsi@mst.edu

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work
Part of the Electrical and Computer Engineering Commons

Recommended Citation
Lu, Shuai; Corzine, Keith; and Ferdowsi, Mehdi, "High efficiency energy storage system design for hybrid electric vehicle with motor drive integration" (2006). Faculty Research & Creative Works. Paper 919.
http://scholarsmine.mst.edu/faculty_work/919

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
High Efficiency Energy Storage System Design for Hybrid Electric Vehicle with Motor Drive Integration

Shuai Lu, Student member, IEEE, Keith A. Corzine, Member, IEEE and Mehdi Ferdowsi, Member, IEEE

Electrical and Computer Engineering Department
University of Missouri - Rolla
Rolla, MO, USA
SL4xf@umr.edu; Keith@corzine.net; Ferdowsi@umr.edu

Abstract—This paper proposes a new energy storage system (ESS) design including both batteries and ultracapacitors (UC) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. The conventional designs require a dc-dc converter to interface the UC unit. Herein, the UC can be directly switched across the motor drive dc-link during the peak power demands. The resulting wide voltage variation due to UC power transfer is addressed by the simple modulator introduced in this paper, so that the motor drive performance is not disrupted. Based on this new methodology, the paper further introduces two ESS schemes with different topologies, UC rating and energy flow control. They are applicable to both lightly and heavily hybridized HEVs. Both schemes have the benefits of high efficiency (without a dc-dc link) and low cost. The simulation and experimental results validate the new methodology.

Keywords—energy storage, hybrid vehicle, power management, regenerative braking, ultracapacitor

I. INTRODUCTION

Energy storage systems (ESS), which include both batteries and ultracapacitors (UC), have been widely studied in hybrid electric vehicle (HEV) and electric vehicle (EV) applications [1-4]. Employing ultracapacitors relieves the high-energy-density battery unit from the peak power transfer stress due to their higher specific power and efficiency. This extends the battery life span and greatly reduces the required battery size. As depicted in Figure 1, conventional method of interfacing the UC unit is to use a bidirectional dc-dc converter to control the power flow in/out of the UC. Therefore, despite the wide variations of the UC terminal voltage, the voltage across the motor drive dc-link remains constant. The dc-dc interfacing converter introduces considerable switching and conduction power losses. It also poses stability issues particularly at high inrush currents [4-5]. Moreover, it adds cost and weight to the system particularly with its large inductor rated for the peak power transfer. In this paper, a new approach is introduced to directly interface the UC unit with the dc-link. As shown in Figure 2(a) (scheme I), no intermediate link is needed and therefore no extra losses are introduced. The UC is utilized only during the peak power surges such as braking and acceleration. The resulting wide variation of dc-link V_{dc} is handily resolved by the inverter modulation method introduced herein so that the normal motor drive output is not disrupted.

The ESS design needs to take the high UC cost into consideration. The ESS topology and the corresponding energy flow control need to make the most out of the added UC cost. This paper provides an insightful illustration of the relationship between the motor drive speed and UC state of charge. Then the principle for UC sizing is specified and the optimal UC sizing is defined for scheme-I. With its modest UC size, it is a basic and economic solution to the efficiency improvement of regenerative braking (especially effective in urban driving cycles, where braking and acceleration are quite frequent). Scheme-I is particularly preferable in lightly-hybridized HEVs.

For heavily hybridized HEVs or pure EVs, where a large ESS is required, an alternative scheme (ESS scheme II) is proposed. With some added hardware and UC sizing, it inherits the good features of scheme I, such as high efficiency via direct UC interface; it also satisfies the regular HEV/EV peak power demand with only UC sources; therefore the internal combustion engine (ICE) and batteries can sustain only the baseline power demand. In a heavily hybridized HEV, the ICE is small and the electric propulsion subsystem power share is considerable. Therefore, the complete coverage for peak power demands by the UC leads to a major reduction in the battery size, which justifies the increased UC sizing and cost.

For HEVs with an electric motor ranging from 10 kW to 100 kW, different variable frequency drive (VFD) controls can be used. The Volts per Hertz (V/F) control is easy to implement while the vector control approaches (rotor flux oriented indirect, stator flux oriented, DTC, etc.) offer better dynamic performance and easier torque sharing with the ICE subsystem. The proposed ESS systems are verified with the integrated VFD control, where the vector control is used in detailed simulations and V/F control is used in the experimental verification.
Section II introduces the new ESS topology (scheme I), new modulation method, and its operation ranges. Design considerations and power management strategy are illustrated in Section III. Section IV presents the second proposed ESS topology (scheme II) and describes its operating modes. Simulation and experimental results are presented in Sections V and VI, respectively. Section VII draws conclusions and presents an overall evaluation of the new proposed ESS.

II. ULTRACAPACITOR/BATTERY ESS SCHEME-I

A. New ESS Topology

The first efficiency improving scheme features a simple and cost effective topology. Either the battery or UC source is connected across the motor drive dc-link via the complimentary switch pair (T1 and T2), as indicated within the dotted rectangle in Figure 2(a). An electrolytic capacitor C1 is connected in parallel with the battery as the source for the motor drive dc-link current PWM pulses. The electrolytic capacitor C3 can be connected in parallel with the UC depending on its internal resistance. The lower limit of the UC voltage V2 is set at 1/3 of its upper limit (battery voltage V1); therefore the discharge depth is 8/9 of its full capacity. When T1 is on and T2 off, the point o is clamped to V1, and D2 is reverse-biased; the UC is then isolated and the battery becomes the only source for the motor drive. When T2 is on and T1 off, the dc source is swapped to the UC, and D1 is reversed biased, leaving the battery bank isolated from charging/discharging current Idc. When the peak power surge occurs during braking and acceleration, the UC source can be swapped in for higher efficiency until the peak power cycle ends or the UC state of charge (SOC) reaches its upper/lower limits.

Figures 2b, 2c, and 2d show the possible T1/T2 switch pair implementations. Utilizing power semiconductor switches (Figure 2b) introduces an extra conduction loss over T1/D1 in steady state. Since the switch pair requires no fast turn-on and turn-off characteristics, electro-mechanical switches can be used as in Figure 2c. The conduction loss is thus eliminated, however the response time is longer (a few ms). Precautions might be taken to protect the UC from possible shoot-through damage, even though the UC can sustain thousands of amps short circuit current. When IGBT is used in T2 (Figure 2d), the shoot-through fault can be terminated within a few μs.

This proposed ESS topology has a fault tolerance feature in that the UC is protected against overcharging when the controller malfunctions, because of the discharge path via the anti-parallel diodes D1 and D2, which keeps V2 below the battery voltage V1. Also during dead-time when T1 and T2 are both off, Idc still has the path via either D1-C1 (negative Idc) or D2-UC (positive Idc) so no high voltage spike is induced.

B. The New Modulation Method

The simplified ESS topology entails extra complexity in variable frequency motor drive (VFD) modulator. During HEV peak power demand, the direct UC connection across the dc-link implies a changing Vdc due to the energy transfer from/to the UC. A straightforward modulation method is proposed herein to guarantee that the motor drive voltage reference vref can always be accurately synthesized (i.e. the normal fundamental voltage output is not disrupted by wide Vdc variations). When the VFD energy source is swapped from the battery to the UC, Vdc steps from the constant V1 to the changing V2. For the correct duty ratio computation, the modulator needs to update Vdc every PWM cycle and the voltage reference vref has to use the real value instead of the modulation index (m-index).

Figures 3 and 4 illustrate the proposed modulation method in natural sampling and space vector perspectives. Figure 3 shows the normalization process and equations to compute the duty ratio for each phase. The voltage reference vector is to be transformed into each phase and certain common mode variations. When the VFD energy source is swapped from the battery to the UC, Vdc steps from the constant V1 to the changing V2. For the correct duty ratio computation, the modulator needs to update Vdc every PWM cycle and the voltage reference vref has to use the real value instead of the modulation index (m-index).

Figures 3 and 4 illustrate the proposed modulation method in natural sampling and space vector perspectives. Figure 3 shows the normalization process and equations to compute the duty ratio for each phase. The voltage reference vector is to be transformed into each phase and certain common mode variations. When the VFD energy source is swapped from the battery to the UC, Vdc steps from the constant V1 to the changing V2. For the correct duty ratio computation, the modulator needs to update Vdc every PWM cycle and the voltage reference vref has to use the real value instead of the modulation index (m-index).

C. Operational Limitations

Certain limitation exists for the UC voltage variation in normal VFD operation. As depicted in Figure 5, the typical VFD voltage and its synchronous frequency are roughly proportional except for the motor resistive voltage drop. Based
on this, Figure 6 shows the two red rings of different inverter voltage magnitude that can also represent the motor full speed and half speed operation. Transformed with HEV mechanical reduction gear ratio, they correspond to the boundaries of the vehicle highway and urban speeds, respectively. In Figure 6, the radius of the inscribing circle of the hexagon represents the maximal reference voltage magnitude $|v_{ref}| < \frac{2}{\sqrt{3}} \frac{1}{2} v_{dc}$ and the maximal VFD motor speed; it varies with the changing dc-link voltage. In time domain (Figure 7), this maximal speed can be plotted in typical driving cycles. Herein, vehicle acceleration with the UC source decreases $V_2 (v_{dc})$ and the maximal speed (in blue); while the braking increases both. As long as the motor speed is below its maximal limits, the VFD can sustain braking and acceleration with the UC source alone. Otherwise, the energy source is switched to the battery.

This limitation of the UC voltage variation poses no concern to scheme I, since the dominant occurrence of the braking and acceleration are in urban driving [9-10]. As the motor speed is lower than half or 1/3 of the rated value, the UC can be discharged down to half or 1/3 of v_{dc}, i.e. 3/4 or 8/9 of the UC energy storage can be utilized.

D. Add-on Charging Circuitry and Practical Considerations

As losses exist in all sub-systems of vehicle’s propulsion system, the regenerated energy in one cycle is not sufficient for the subsequent acceleration (to the same speed). Therefore, a small dc-dc converter can be added as shown in Figure 8 to charge the UC. The state of charge is maintained by the overall vehicle energy control. By adjusting the duty ratio of T_3, the UC charging current can be controlled at much smaller value than the current at peak power demand, so the required dc-dc converter requires much smaller switches and inductor.

One thing to note is that the motor drive inverter can not have a snubber capacitor directly across each inverter phase leg with this ESS topology, since the step change of the dc-link voltage will induce large current surge through the snubber capacitor and trigger the swap switch driver fault. Therefore, RC snubber across each switch can be used instead.
III. HEV ESS DESIGN CONSIDERATIONS AND POWER FLOW CONTROL METHODOLOGY

In this paper, three major ESS design objectives are specified: improving ESS efficiency, reducing UC cost, decreasing battery sizing while maintaining the peak power performance of the HEV electric propulsion. With the dc-dc sources swapping methodology, the first objective is realized. The second objective is vital for the commercially viable HEV since the UCs are still a costly solution for the energy storage applications. The cost oriented design principle is that the energy transfer with the largest UC voltage variation should supply only one typical peak power cycle; hereby to minimize UC sizing. This is based on the fact that braking is usually followed shortly by acceleration. So the regenerated braking energy (less than acceleration energy needed due to the loss) stored in the UC will be used up in subsequent acceleration and leave enough room for the next braking. For scheme I, the UC rating is to supply the energy (20 to 30 W•h) of a full acceleration cycle up to the urban speed (55 to 65 km/hr) with 75% of its capacity (UC voltage varies between half and full). HEV energy flow control is straightforward in scheme I. Detailed estimation shows that it keeps the UC bulk order cost under US $800 and 10 kg for a sedan size HEV; at the same time, it eliminates the need for a bulky dc-dc converter with peak current rating. Thus it is a very practical option for the future HEV or EV ESS.

This modest UC sizing greatly improves the ESS efficiency in urban driving (frequent braking occurrence), but it will not supply power surges with longer duration, such as the acceleration to freeway speed. The small UC will be exhausted before reaching half speed; the battery needs to provide the high power for the remainder of the cycle and the battery size must be large. In cases when the third objective is mandatory in HEV design (i.e. to maintain the peak power while reducing the battery size and overall ESS weight), the UC size has to be increased. Assuming that HEV distributes power proportionally between ICE and the electric powertrain, approximately four times the size of the UC in scheme I is needed (four times the kinetic energy at about twice the urban speed). This way, the reduced-sized battery only supplies the baseline power, except for unusual cases like extended time of hill climbing.

For the complete solution to all three design objectives, not only the UC size has to be increased, the topology in scheme I and the energy flow control also need to be modified to handle a full highway driving cycle as sketched in Figure 9. Note that the power demands below points A and B still come from the UC source directly. Beyond these limits, the UC voltage is too low to maintain the motor speed which is further increasing. During these periods (indicated by the shaded areas), a bidirectional dc-dc converter is needed to control the surge power from the UC. The dc-link swaps to the battery during the constant speed cruise. Subsequently, UC is swapped in to absorb regenerative braking energy and then charged with the controlled small current during idle time. The flow chart of this new energy management scheme (scheme II) is illustrated in Figure 10. Circuit implementation of this new ESS topology is shown in Figure 11 and discussed in the next section.

IV. FULL PERFORMANCE ESS TOPOLOGY AND ITS OPERATION MODES

The new ESS topology (in Figure 11) has three operation modes for peak power demands. For braking and acceleration in the urban speed range, Mode I is used (see Figure 12(a)). Therein, the dc-dc converter (in red dotted lines) and the battery are bypassed and the UC becomes the direct power source of the motor drive using the modulation method in scheme-I. When the acceleration/braking occur between highway speed and urban speed, Mode II is used (see Figure 12(b)). The majority of the VFD power demands are transferred from/to the UC by controlling the magnitude of the inductor current (within the dc-dc converter). The rest are from the battery source. The UC power contribution can be viewed as a current source injection into the VFD dc-link and it is

Figure 10 Energy flow control block diagram.

Figure 11. Scheme II topology: complete solution.
expressed as: \(P_{sc} = V_1 \cdot (i_L \cdot D_2) = V_2 \cdot i_L \), where \(D_2 \) is the duty ratio of T3. Note that in Figure 12(b), the power flow indicated by red arrows is reversed for negative direction during regenerative braking at high speed. The purpose of Mode III (see Figure 12(c)) is to charge the UC by battery, particularly during the idle period between braking and subsequent acceleration cycle. SOC of the UC is maintained by the system level intelligent control. In this mode, T3 switches at PWM frequency and T4 remains off. While T3 is on, inductor current \(I_L \) increases. Whereas turning T3 off forces D4 to conduct and decrease \(I_L \).

Generally, Mode I is the most frequent operating mode; while Mode II is to maintain the vehicle power performance during less frequent highway speed braking/acceleration. It is instructive to discuss the transitions between Modes I and II.

As in Figure 9, acceleration to the highway speed starts with Mode I. When the UC voltage \(V_2 \) becomes too low to maintain the VFD motor speed (corresponding reference voltage), T2 is turned off and T1 is turned on. Then switches T4 and T3 switch with a certain PWM duty ratio according to current injection command. After a few PWM cycles, \(I_L \) reaches the steady state. The current injection into the dc-link is in PWM pulses and so is \(I_{dc} \). The capacitor provides the source for these high frequency current pulses and stabilizes \(V_{dc} \). When braking from highway speed, the control starts in Mode II, where the inductor current (negative direction) is controlled to direct all the braking energy to the UC. As \(V_2 \) increases and the motor speed decreases beyond point B (Figure 9), the UC voltage becomes large enough to produce the VFD reference voltage for the decreasing motor speed. Then Mode II is switched to the high efficiency Mode I. The inductor current takes the path through D4 to dump the residue energy into the UC.

V. SIMULATION STUDY

The integrated control of the VFD drive and ESS were simulated with a detailed system model. The VFD drive uses direct torque control with space vector modulation (DTC-SVM), but any other types of vector controls could be used. The modulation method introduced earlier in this paper was applied to replace the conventional SVM. The torque command to the VFD is assumed to be constant during the acceleration and braking. Figure 13 shows the simulation results for a
complete cycle of acceleration and braking (highway speed using ESS scheme II). The six traces are the motor phase current, torque output, motor speed, VFD dc-link current, UC discharging current and UC terminal voltage, respectively. The operation modes and their transitions are labeled in the figure. Note that when mode I is used, the UC charging and discharging current \(I_{c2} \) is in PWM pulses form; while in Mode II, the \(I_{c2} \) is the inductor current, which is commanded to follow the peak power transfer requirement.

Figure 14 illustrates the direct UC interface operation (scheme-I). With the proposed modulation method, the commanded fundamental of \(v_{ax} \) remains unaffected by the changing \(v_{dc} \), even though the envelope of the \(v_{ax} \) changes with dc-link \(v_{dc} \).

VI. EXPERIMENTAL RESULTS ANALYSIS

A 3.7-kW induction motor is used to emulate the HEV motor. Parallel arrays of four 3900uF electrolytic capacitors are used to emulate the UC to observe wide voltage variation during braking and accelerating. The prototype uses the topology in Figure 2, and dual pack IGBTs are used as the dc-source swap switch. A Microchip dsPIC30F4012 microcontroller is used for the motor drive and ESS control. The Volts per Hertz control is used in lab validation. The PWM sample frequency is 5KHz.

Figure 15 shows the motor drive performance with the proposed dc source swapping. Trace 1 is the commanded speed profile emulating an urban driving cycle. The trace 2, 3 and 4 are the filtered version of the motor drive a-phase voltage output, dc-link voltage and the a-phase current, respectively. The UC is switched across the dc-link during acceleration and braking; \(v_{ax} \) then has wide voltage variation and the large step change as the dc-link swaps between battery and UC. In this test, conventional SVM modulation is used. Therefore, \(v_{ax} \) magnitude can't ramp up together with the frequency as commanded. Figure 16 shows the zoom-in view of the deformed \(v_{ax} \), where the dotted line represents the commanded \(|v_{ax}| \). Obviously, the deformed \(v_{ax} \) is shaped by the outline of \(v_{dc} \) waveform..

Figure 17 shows the same set of lab results when the new modulation method is used with same motor speed profile. Obviously, wide \(v_{dc} \) change is now transparent to the motor as its output phase voltage (fast average or filtered value) follows the ramp correctly. Hence, \(v_{dc} \) change will not disrupt the motor drive performance.

It is instructive to take a detail look at the proximity of the point of source swapping from the UC to the battery. In Figure 18, the traces are a-phase to ground voltage, a-phase to neutral voltage, dc-link voltage and a-phase current, respectively. Even though the \(v_{ax} \) and \(v_{ax} \) has the obvious step change in its
PWM waveform outline, its fast average value remains unchanged before and after the source swap point. Also note that there's a slight discrete change in the current waveform. This is due to the discrete property of digital control. It is illustrated in Figure 19, which plots the same set of lab data with a smaller time scale. Ideally, the duty ratios of the phase to ground voltages (such as \(v_{ag}\)) should have step change simultaneously with \(v_{dc}\). In the PWM cycle when the source swap occurs, the battery voltage is used to compute the three phase duty cycles. However, this change takes effect in the subsequent cycle. Therefore, as indicated by the highlighted region, the wrong duty ratios are still used after the step change of \(v_{dc}\). Note that the active PWM portions are on the two edges of each cycle.

Since the IGBT implementation of the swap switch has only a few µs of rising time, a completely smooth and seamless dc-source swapping can be achieved by scheduling the external timer module to start source swapping at the beginning of the next PWM cycle after the duty ratios are computed using the new value of the dc-source voltage. Using electro-mechanical switch takes longer time (several PWM cycles) to change the dc-link voltage, the resulting discrete current step might be more significant; however, the short duration transient won't affect the motor performance much.

Figure 20 shows a test of ESS energy flow management, where the UC is charged by multiple braking phases before it is used in acceleration. Therein, the traces are the a-phase line to neutral voltage, the dc-link voltage, and a-phase current. The first acceleration lowers the UC voltage. Even with the energy absorbed by the subsequent braking, it is still insufficient to supply the next acceleration. Therefore, the second acceleration uses battery power. Then the second braking builds up the UC voltage to the point such that it can completely supply the next acceleration.

As stated previously, in lightly hybridized vehicles, a small low power dc-dc converter can be used to charge the UC. This builds up the UC voltage during coasting and idling periods, so that in most cases, the UC has enough stored energy and can be used for each acceleration cycle.

VII. CONCLUSION

The major energy saving scheme employed by HEVs is recycling the regenerative braking energy, especially in the urban driving cycles, which basically consist of subsequent braking and acceleration. In the conventional battery and ultracapacitor energy storage system, the ultracapacitors are interfaced by a dc-dc converter. However, it is proposed in this paper that in the urban driving conditions, where the motor speed is usually below its half rated value, the UC can be directly connected into the dc-link of the motor drive as its power source. By employing a slightly more complex inverter modulation, the motor drive output voltage remains intact even though the UC has wide voltage variations. It is also proven that the effective UC voltage variation range can utilize its energy storage capacity to a large extent.

The UC direct connection methodology improves the regenerative energy recycling efficiency considerably. Design principles of HEV ESS are specified in this paper. For realization in lightly hybridized and heavily hybridized HEVs, two ESS schemes are proposed with different topologies, UC rating and energy flow management. Detailed simulation and experimental results verify the new methodology and the effectiveness of the control set.

REFERENCES

