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PHYSICAL REVIEW A VOLUME 56, NUMBER 3 SEPTEMBER 1997

Lamb shift of 3P and 4P states and the determination ofa

U. D. Jentschurd* G. Soff,* and P. J. Moh#"
nstitut fir Theoretische Physik, TU Dresden, MommsenstraRe 13, 01062 Dresden, Germany
2Atomic Physics Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899-0001
(Received 6 March 1997

The fine-structure interval dP states in hydrogenlike systems can be determined theoretically with high
precision, because the energy levelsPoktates are only slightly influenced by the structure of the nucleus.
Therefore a measurement of the fine structure may serve as an excellent test of QED in bound systems, or
alternatively as a means of determining the fine-structure constaith very high precision. In this paper an
improved analytic calculation of higher-order binding corrections to the one-loop self-enerdy ah® 4
states in hydrogenlike systems with a low nuclear charge nuzhisepresented. The method of calculation has
been described earlier by Jentschura and PaclhiBtiis. Rev. A54, 1853(1996], and is applied here to the
excited P states. Because of the more complicated nature of the wave functions and the bound-state poles
corresponding to decay of the excited states, the calculations are more complex. Comparison of the analytic
results to the extrapolated numerical data for hfgiens [Mohr and Kim, Phys. Rev. A5, 2727 (1992
serves as an independent test of the analytic evaluation. Theoretical values for the Lamb shif states
and for the fine-structure splittings are givé81050-2947@7)08408-4

PACS numbd(s): 12.20.Ds, 31.30.Jv, 06.20.Jr

[. INTRODUCTION Ag o coefficients. In this paper, we present an evaluation of
the Ag o coefficients for the By, 3Pz, 4Py, and 4Pz,

Evaluations of the radiative corrections in higher order forstates. The results lead to improved values for the Lamb shift
bound states are an involved task because of the appearar@ethe respective states, and to a new theoretical value for the
of a multitude of terms, and because of the difficulties assofine-structure splitting. We give an explicit formula for the
ciated with bound-state formalism. In this paper, we presentine structure of the R, 3P, and 4 states as a function of
an improved calculation of higher-order corrections to thethe fine-structure constanat, which can be used to obtain a
one-loop self-energy of an electron in an excitdel & 4P value of @ from experimental data.
state[1,2]. In this paper, we briefly compare some of the methods

For the contributionSEgg of the one-loop radiative cor- that have been developed for the treatment of the one-loop
rection to the Lamb shift of a bound electron, we have theproblem. We give a brief account and illustrate the useful-
following nonanalytic expansion in powers @f times the ness of thee method[1,7] for analytic evaluations. We then
fine-structure constant, describe the evaluation of the high-energy part to the self-
energy, with a focus on details of the integration procedure.
We then proceed to the low-energy part. Results of the cal-

SEce= —F, (1) culat_lon are given, and specific contributions are discussed in
n detail.
where Il. VARIOUS METHODS OF TREATMENT
OF THE ONE-LOOP SELF-ENERGY
— -2 2 . . . .
F=As1n(Za)” “+ Ayt (Za)As gt (Za) Using units in whichz=c=1 and e?=47a, we can

write the integral corresponding to the one-loop self energy

><[A612In2(Za)*2+A6,1In(Za)*2+A6'0+(Za)GSEJ]. of an electron bound in a Coulomb field,

2
. . . . . ) ) do [ d3k
The remainder functioGsg ;is of order 1, and is comprised  SEg= lim _|92J' — Dfe%(kZ,M)
of the termsA; , and higher coefficients. Corrections, ;, M e ce2m) (2w 7
As o, andAg, vanish forP states. The term8, q (see, e.g.,
Ref.[3]) andAg ; [3,4] are known analytically. The terry, o 1 , —
contains the Bethe logarithm which has been evaluated to 12 <ﬁ7ﬂm7 ¢> —(ylom(M)|y),

significant figured5,6]. Results have not been obtained for

()
*Electronic address: uli@nist.gov where D;flgv(kz,M) is the Pauli-Villars regularized photon
"Electronic address: mohr@nist.gov propagator(in the Feynman gauge, we ha@fﬁ(kz,M)
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FIG. 1. Feynman contour fow integration (one-loop self- FIG. 2. Mohr’s contour for evaluating the one-loop self-energy

energy. Lines directly below and above the real axis denote branchcontribution to the Lamb shift.

cuts from the photon and electron propagators. Crosses denote poles

originating from the discrete spectrum of the electron propagator. gctual evaluation of the Lamb shift, however, a different con-
tour of integration is used by most authors. Taking advantage

=—g,,[1k*~1/(k*~M?)]). The termdm(M) in Eq.(3)is  of the analytic properties of the integrand and of Jordan’s

the one-loop mass counter term as a function Mf lemma, one can change the Feynman contour in the complex

sm(M) = a(34m)m[In(MZmA)+3]. y=y¢Ty° denotes the Plane without changing the result of the calculation. Here we

Dirac adjoint. It is straightforward to derive E(B) with the ~ compare the contour used in Bethe's original derivation of

Feynman rules of QED. By rescaling all variables to thethe Lamb shift, the contour used by Mohr in Reff8-12,

electron mass scale, and the contour used in Pachuckésnethod, which is used
in this paper.
Mohr’'s and Pachucki’'s methods both depend on a divi-
wo—Mw’, k—mk', p—mp’, sion of the calculation into low- and high-energy parts.
Mohr’'s method relies on the conto, in Fig. 2. His low-
VomV, MomM, 4) energy part is determined by the part of the cont@yy

where Rep)<E,. The residues of the poles of the photon
propagator only contribute to low-energy part in this case. It

we have can be shown that the low-energy part is given by the for-
mula
- _Zfdw’foﬁk'[l 1

se=—iem| — —— - o

2 3l 12 12__ 12 )

o2 ) @mk® KoM AE, = lim ﬁEn—iJ d| 51— <

60+ T 47?2 )<, K k?

1
X w yﬂ "K' 0 ry# ¥ 1
p-kK-1-yV x( gl aleikr de 7yl | (6)
Ho—E +k—io

—(ylsm(M")[ ). (5
[cf. Eq.(3.8) in Ref.[9]; Hp is the Dirac Hamiltoniah This

In this paper we will use variables rescaled to the electrorcontribution contains terms of lower order iZ4) than
mass, and suppress the prime of the rescaled variables in th8a)*. The spurious lower-order terms cancel when the low-
sequel. Note that in our system of units, we h&eeay) for  and high-energy parts are added in that method. The high-
the Bohr radius of the atorag,,=1/(Za). By contrast, in  energy part is obtained by Wick rotating the Feynman con-
atomic units, which are used, for example, in Ré&f], we  tour for w integration along the line with Re()=E,, . In the
would have the Bohr radius of length unity. nonrelativistic limit, expressiori6) correspondqup to the

The analytic properties of the propagators determine théerm «/7E,) to what would be expected to be the self en-
location of the poles in the integrand in E&), as indicated ergy of the electron in terms of traditional second-order per-
in Fig. 1. The original Feynman prescription calls for inte- turbation theory due to transverse modes of the electromag-
grating the photon energy along the contd@y. For the netic field,

AE=ReAE, ) ——E
L q L) T n

\=1,2 4m? E,—E,—k

_S f s darIllfl/(X)[V-ex(k)eik‘f+e”"rv-ex(k)]l,/,n,(xn2
k<K

n’

: @)
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Im(w) } ‘l for the low-energy part in leading order. The renormalization
Cy Cy term —1/k is gone, and the upper cutoff has been changed

/ ' > from K=m to K=e. The justification for leaving out the

00¢X X ¢ Re(w) renormalization term is intimately linked to the special series

: =S expansion prescription used by Pachucki.
\CL _ Cx Pachucki's method relies on the fact that the low- and
l ) high-energy parts may formally be regarded as functions of
the fine-structure constant and the cutoff parametes.
FIG. 3. Thew-integration contour used by Pachucki and in the Their sum, however, the self-energy of the elect&in

calculation presented in this paper. For the divergent terms in the

high-energy part, we use the Wick-rotated contour given by the OE(a)=E(a,e) +Ey(a,€), (1)
lines extending ta&*i«. For the naively convergent terms, we use
the original contouiCy; which extends tot+ o~ *i§. does not depend o, provided the high- and low-energy
parts are expanded first im, and then ine (the order of
where expansion plays a crucial role in that case
Another important point in Pachucki’'s method is that the
_ _ KK spurious lower-order terms which were present in Mohr's
212 €, (k) el (k)=8"— R (8)  calculation vanish in the limit—0, so we do not need to
A=1,

take them into account. For example, in Mohr’s calculation,
the first spurious termd/ =) E,, originated from a trivial in-
K in Eq. (7) is an appropriate energy cutoff to make the tegration [E'dka/7w=(a/7)E, . In Pachucki's method, we
expression finite(for a derivation of Eq.(7) cf. Ref.[13], would cha?lge the upper limit of integration goand calcu-
Eqs.(7-112)—_(7-113, ibid_., where in thfe relativistic case one late lim, _.of dka/ = 0. That means by choosing tlapre-
has to substituter for 1/iV). In Mohr's method,K corre- scription, we not only make the expression for the low-

sponds tok,. Bethe’s derivation of the Lamb shift, which nergy part separately finite, but also dispose of the spurious

gg;/rzgtrl]e'(;gr?tt'fifjaA“ng gf ttzz if(:?(':r:c(ljfJZ?hZeéti?retgg%{o?]n ower-order terms. That is the principal reason why Pachu-
yi NEGA,,1, DUL DI inciu foutl cki's method is well suited for an analytic calculation of

to the Lamb shift of order/m(Za)* due to the anomalous higher-order corrections to the one-loop self-energy.
magnetic moment, comp_rlse_d the expression given in Eq. The choice ofe remains arbitrary to a certain exte(it
(7), but with a major modification. Bethe subtracted from Eq'has to be because we analytically expandsjrand thus re-

(()7f)zat¢reegc<)al?g(|:?r%trl102ut: ?; \I/;/So ggfﬂ?ﬂ?g:gcg:ﬁ\ e'rr]ﬁirs comﬁ;itioanire arbitrariness However, we must put some restraints
o ' on the magnitude o€. In the high-energy part, we expand
would make a contribution to the rest mass of any electron

and thus would be unobservable. In our terminology, Bethe’%he propagator of the bound electron in powers of the bind-

nonrelativistic(NR) expression would be written ing field V. We initially assume a fixed value far which
P prevents infrared problems, but since eventualy 0, this

expansion is regarded as a formal expansion that is not nec-

2,NR
OBL essarily convergent. However,may not be arbitrarily large.
2a (K=m p 1 1]p' If we let e>2m, we enclose poles not only from the photon
=— Pﬁ . dk k{ ¢| E[m - E}E' ), propagator, but also from the negative spectrum of the Dirac-

Coulomb propagator, which would significantly alter our ex-
9) pression for the low-energy part. It is also required that in the
entire domain of the low-energy part, an expansion of the
whereHyg is the Schrdinger Hamiltoniang is the nonrela-  expression
tivistic wave function, and the subtracted terail/k in the
integrand corresponds to the portion of mass renormalization exp(ik-r)
attributable to the low-energy part. By taking the principal
value (P), we identify the real part of Eq9) as the energy in the matrix element
shift, whereas the imaginary part corresponds to the decay
width of the statd¢). Using the subtraction, Bethe disposed Cikr i
of the spurious lower-order terms and obtained a finite ex- (yla'e HD_E—_k_maJe )
pression. "
In Pachucki’'s methodsee Fig. 3, an expression similar
to Eq. (7) is obtained in the nonrelativistic limit for the low-
energy part, but with an upper cutoff epsilon for the photon
energy. This cutoff epsilon separates the low- and the high
energy parts. In the dipole approximation eékp¢)—1, one
obtains the expression

in powers ofk-r corresponds to an expansion in powers of
Za [this requirement justifies the so-called dipole approxi-
mation, in which we replace exji( r) by unity to obtain the
fowest-order contribution to the self-eneilgyrhe order of
magnitude ofr is 1/(Z«) in natural units. Thus we require
e<(Za). The dominant contribution is then determined by
, . the region in which the photon eneréyz w=0((Za)?), so

2a [« P 1 P hatk-r= hi ider the relativisti
SE = — — | dk Kal= Ll (10) thatk-r=0(Za). In this paper we consider the relativistic

L (4| —E ol : ! g
3mJo m Hs—(E,—k) m corrections up to relative ordeZ)?. This corresponds to
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;4"\'11% — §NWH§+§PNV‘1$+§JJWHE+§”W""Q+ exact solution to the Dirac-Coulomb equatian powers of

(Za), then we apply operators in coordinate space represen-

FIG. 4. Expansion of the bound electron self-energy in pOWerStation, and finally integrate the resulting expres'sions with the
of the binding field. _help of a set _of rules that apply to standard mte_grals. The
integrands which are to be evaluated for the matrix elements
have lengths of up to 2000 terms.

We use a parametric representation of the mass counter
term to allow for local cancellation of the divergences. It can
be shown that

expanding expk-r) up to (k-r)2. Our restrictions on the
magnitude ofe do not compromise the validity of analytic
expansion in the parameter

lll. HIGH-ENERGY PART

he it ion is Qi do [ d3k
The high-energy part of the radiative correction is given Sm(M)= —iesz f

ci2m) (2m)3

by

1 1

w2_k2 w2_k2_M2

2(w+1)

X
w’—k’-2w

I J dwf dk [ 1 1
=—ie‘m| 5— ——
H cu2m) (2m)3 K2 K2—M?2

(15

_ 1 _
w7 J . . . .
XYy ——————= vl ) — (Y] Sm(M)[ )
p—k-1-yV is a suitable parametric representation of the mass counter
term along the contou€,;. The portion of mass renormal-
(12 ization along the contou€, vanishes in the limit—0, and

we have

where we have used the Feynman gauge for the photon
propagatof D (k)= —g,,/k?] and the Pauli-Villars regu-

s L d d3k
larization prescription sm(M)= — iesz _“’f
ce2m) (2m)3
! ! : (19 1 1 2(0+1)
— - . w
K2+i6 K2+i8 k*—M2+is s s a3 2
ke+ie k°“—M<+ie|lw*—k°—2w

Note that we may leave out the prescription when inte-

grating alongC,,, since we take the difference of the inte- =a3—mln(M2)+ 4 (16)
grand infinitesimally above and below the real axis@g. 47 2

Along the positive real axis, the integrand has branch cuts

due to the photon and electron propagators as depicted ifherefore, by(locally) subtracting the expression

Fig. 1. The expression given in E(L2) for E, is infrared

divergent. In the evaluation, we start by calculating the ma-

trix element (0+1)
sm=——
I wz—k2—2w<¢|¢>
I 1
P=(y|y PR—y Yl ) (14 pefore the finaklw d3k[1/(w?—k2) — 1/(w?—k2—M?)] in-

tegration in Eq.(12), we can subtract the divergences asso-
ciated with mass renormalization.

Note thatém, contains the matrix elemexity| ), which
is state dependent. Using the virial theorem for the Dirac-

up to the order of Za)®. As outlined in Ref[1], this can be
achieved by first expanding the electron propagator in pow

ers of the binding Coulomb fiel&/. This leads to three- : - —
vertex, double-vertex, single-vertex, and zero-vertex partsgoummb equation ((a-p}——(V)), we have(y|y)=E,,
hereE, is the dimensionless Dirac energy of the state

The expansion can be diagrammatically represented as iff / . .
Fig. 4. ?he resulting expresgions are sugseqﬂently expanded We give here the result for the renormalized matrix ele-
in powers of the spatial electron momenta This procedure ent
is feasible forP states because, up to ord@a()®, all of the
resulting matrix elements converge. After performing the al-
gebra of the Dirac matrices, the resulting matrix elements on

the P state are evaluated by symbolic procedures written in

the computer algebra systeRmTHEMATICA [14]. For the up to (Za)® in terms ofk and w. We have, for the By,
evaluation, we first expand the wave functi@iven by the state,

5renzﬁ_ om (17)
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Pred 3P 1) =(Za)[ — 8k2+ 4k*+ 6k%w — 3k*w+ 120%— 10k’ w?— 6w+ 6k2w3+ 6w* — 3w’ ]/[27(k*+ 20— v?)?]
+(Za)*[ —12&*+ 485+ 24kB+ 96k * o + 2k®w — IkBw + 256k % w2 — 156k * w2 — 90k S w? — 168k w3+ 46k * w3
+36k%w3— 160w* + 24k %w* + 126k w* + 720° — 98k w° — 54k 0° — 132w° — 78k?w® + 500" + 36k*w '+ 18w®
—9w°)/[324Kk*+ 2w — w?)®]+(Za)®[ — 1 044 99K®+ 516 2248+ 319 03%k1%+ 32 34(k'%+587 77&*w
+1716 7365w+ 26 328w — 65 31K °w — 808K 2w — 358 40K w2+ 4 218 36&*w?— 3 461 60 °w?
—1372 4768w?— 177 87%P¥w2+1 469 44B°w3— 9 185 34&*w3+1 027 60&K° w3+ 357 63K3w3
+48 51k°w3+ 1 075 20@*— 9 354 24@%w*+ 10 195 136*w*+ 2 348 97&5w*+ 404 25K3w*

—3978 24@°+ 15 638 56@°w°— 3 365 60&K*w°— 777 42K8w°— 121 27%8w°+ 7 869 12@°

—12 272 96@°w®—2 002 39K*w®— 485 10K°w®— 8 571 36(’ + 3 543 12&%w + 839 58K *w’

+161 70K%w’+5 023 20@°8+ 852 60K2w®+ 323 40K*w®—1 231 44@°— 450 87K%w’— 121 27%*w®

— 145 74@0'°— 113 19K w %+ 96 39Qv!+ 48 51K%w'+ 16 17Qv'°— 8085w%]/[612 36Qk%+ 2w — w?)'];
(18)

for the 3P4, state,

Prer(3P3) = (Za) — 8k2+ 4k*+ 6k%w — 3k*w+ 1202 — 10k’ w?— 6w’ + 6k2w3+ 6w* — 3w°]/[27(k*+ 20— »?)?]
+(Za) [ —12&*+ 325+ 8kE+ 32k*w—26k°®w — 3kBw+ 19K w? — 68k* w? — 30k w? — 56k 2w+ 42k* ®
+ 12k w3 — 1120%+ 42k w*+ 240° — 6k2w° — 18k w°+ 36w°® — 26k 2w®— 10w’ + 12K%w  + 6 0®
—3w?]/[324K?*+ 20— w?)®]+ (Za)®[ —4 179 96&°+ 516 60&8+ 224 61641+ 12 182+ 2 351 104w
+243 71%50—1 022 33&80w — 103 11K %0 — 3045% 2w — 1 433 60&%w>+ 8 960 00K * w2+ 667 45K°w?
—539 86&8w?— 66 99K w2+ 4 157 44B2w>— 2 845 69&*w3+ 1 703 63K8w3+ 370 23K8w®
+18 27K w3+ 4 300 80®*— 17 297 28@°%w*— 3 980 70&“*w*+ 135 40&°w*+ 152 25K8w*
—10 752 00@°+ 10 612 00@%w°— 619 136&*w°— 449 82K °w°— 45 67%5w°+ 15 408 96@°— 99 68k2w°®
+586 824*w®—182 70K°w®— 10 647 84® "+ 216 72Kw’ + 159 18K“*w’ + 60 90K°w’+ 2 896 32@°
—543 482w+ 121 80K*w®—278 88@°+ 65 73Kk%w®— 45 67%*w°+ 136 50@w°— 42 63K w™°
—42 2100+ 18 272w+ 6090w ?— 30450w1%)/[ 2 449 440K*+ 2w — w?)']; (19

for the 4P, state,

Pred 4P1j2) = (Za)?[ — 8k?+ 4k*+ 6k?w — 3k*w+ 1202 — 10k?w? — 603+ 6k%w’+ 6w* — 30 ] /[ 48(k?+ 2w — w?)®]
+(Za)¥[ —2944*+ 107K5+ 5208+ 208k *w — 10k®w — 1958w+ 576(%w?— 341K * w2 — 195k w?
—364K%w3+ 105K* 03+ 788 w3 — 560w* + 504K w* + 273K * w*+ 1560w° — 207K w° — 117K*w°®
—2700w®— 169w’ + 1030w’ + 780k%w’ + 390w8 — 1951°]/[ 15 36 K%+ 2w — w?)°]+ (Za)®
X[ —41 518 08B°+ 20 285 0568+ 12 019 56@ '+ 1 140 30& %+ 21 790 726*w+67 517 184°w
—1295 0568w —2 875 25@ 0w — 285 07% 2w — 13 189 1268%w?+ 164 921 344*w?— 138 538 018°w?
—50 829 388%w?— 6 271 65K w2+ 53 975 04@%w3— 357 889 728w+ 50 610 67k w3+ 14 327 25@8 0>
+1 710 45@°»%+ 39 567 36@*— 357 683 20R%w*+ 404 953 92R*w*+ 81 291 28B5w*+ 14 253 7568w *
— 147 302 400°+ 601 024 48R%w°— 153 435 298*w°— 28 556 508°w°— 4 276 12%8w°+ 294 387 52@°
—485 016 00R%w®—59 093 168*w®— 17 104 508°w°®— 325 403 68@ ' + 160 218 80R%w’
+28 458 508“w’ +5 701 5068w’ + 198 315 04@°+ 17 532 2068%w®+ 11 403 008 *w®—56 099 120°
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—14 180 2568°w°— 4 276 12%*»°— 920 50@°— 3 991 05&%w'%+ 2 826 251+ 1 710 45@%w!?
+570 15— 285 07%0%]/[ 51 609 600k>+ 2w — w?)"]; (20)
and, for the £, state,
Pred(4P3) = (Za)[ — 8k?+ 4k*+ 6k%w — 3k*w+ 120°— 10k’ 0’ — 6w+ 6k2w’+ 6w* — 3w°]/[ 48k + 20— »?)®]
+(Za)[ —2944&*+ 75K5+ 2008+ 800k *w — 570k 8w — 75k w + 448k % w? — 165K * w2 — 75k w?
— 14002 w3+ 97k * 03+ 300k w® — 2480w * + 240k w* + 105k * w* + 600w® — 230k w® — 45k * >+ 660w®
— 6502w’ — 170w+ 300Kk?w’+ 15008 — 75w°]/[ 15 36Ak*+ 2w — w?)°]+ (Za)®[ — 41 518 08@°
+5273 47%8+2 372 32&10+ 132 30k*?+ 21 790 72@*w+ 3 438 84&°w— 10 087 5048w — 1 069 81& %0
—33 07%*%w— 13 189 12@%w2+ 88 747 00&*w?+ 4 454 624&°w?—5 916 4848w?— 727 65K %w?
+37 847 04820w3— 29 007 558 *w>+ 18 082 28&°w3+ 3 870 93®3w>+ 198 45K w3+ 39 567 36@*
—163 681 28R%w*—34 772 41&*w*+ 2 115 34&°w*+ 1 653 7503 w* — 98 918 40@°+ 100 285 92@%w°
—8 639 904&*w°— 4 785 62K°w°— 496 12%5w°+ 143 286 08@°— 1 740 48%2w®+5 429 59X *w®
—1984 50&°%w®—99 145 76@ "+ 3 382 962w’ + 1 829 38&*w’+ 661 50K°w’+ 26 784 80@°®
—5 400 92&%w8+ 1 323 00 *w®— 2 737 84°+ 563 43K w®— 496 12%*w°+ 1 400 14®*°
— 463 05Kw%— 408 31Qw!!+ 198 45K w!!+ 66 15Qw'?— 33 075w *%]/[51 609 600k*+2w— w?)’].  (21)

Having calculated®, we finally integrate alon€, to obtain By simple power-counting arguments, it can be shown
the result forEy, that P is exactly the sum of those terms of ordé€rwhere
5 n=—2 for largek. Therefore, the terms contributing Rf.,
Ey= —iesz’ d_‘”J d*k [ 1 _ 1 P can easily be isolated. The terms®y,, can obviously be
ci2m) (2m)3 wP—K2 w2-k2—Mm2| " written as the sum of terms of the form
“ k[, @)
~ i NO)
Note that ad,.,=P— sm,, bothP as well as the local mass Pav= EI m (23)
renormalization termém, are properly integrated with the
regularized photon propagator. wherep; is a polynomial in|k| and w and degp;)=n;—2.

The final integrations with respect to the photon momentarhe entirely covariant integration procedure for the divergent
are done in a different way for the terms By.,, which  terms will be outlined here. The terms in E§3) need to be
require regularization and those which do not. The termsnultiplied by the factors 1%—k?) and 1/@?—k?—M?)
which require regularization are integrated covariantly byfrom the regularized photon propagator. We use Feynman
Feynman parameter techniques and a subsequent Wick roparameters in the form
tion. These terms are not integrated alddg, but rather
along C|,. They are not infrared divergent, so we may put 1 1 nx
e=0 for these terms. Those terms which do not require regu- AB" - fo dX[A(l—x)+ Bx]"*1
larization are integrated in an essentially noncovariant way.

The d3k integration is carried out first, then we proceed toy join the denominators. IdentifyingA,= — w?+k?,
the dw integration. _ A= —0?+k%+M?, andB=k?+2w— w?, we have for the

The integration procedure for the terms which requirecontribution from the unrenormalized photon propagator
regularization is as follows. We isolate those terms inq;(,2—k?2),

(P—5m;) which would be ultraviolet divergent if integrated
with the unregularized photon propagator. We denote these Ai(1-x)+Bx= -k2+ D, (25

i
terms byP{.,. We then evaluate

n—1

(24)

where

5F J do f kL pw K=(@,0=(0-xk), D;=x (26)
iv— 5 PN . = ’ = _X! ) =X
div c 2 (277)3 wz_kz[ re w w 1

. and for the contribution from the renormalization part of the
All terms in P require regularization. photon propagator
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A(1-x)+Bx=—K2+D,, (27) The remaining radial part of the integrals can be evaluated
with the help of the formulas
where
D,=x?+M(1—x). 28 fmd k3 = ; >2

The energy shift due to the divergent terms is then propor-
tional to and

1 ~ . X" pi(|k|, @) A 1 1 (A 1\?

dxfd dk—————, f dke kKX———==In| =|+0 —) :
) fo N ~K2+D o e 2B/ TOlR

whereD represents either of the ternils or D, and itis |t is easy to prove that the dependence on the temporary
understood that the c_ontrlbu_tlon from these two terms musfipper cutoffA disappears when the contribution due to the
be sybtracted to obtain the final result. Performing the W'C‘%nregularized and the regularization part of the photon
rotation propagator are subtracte®{ andD,).
~ . As the final step, we integrate over the paramgtertro-
o—lo, duced in Eq(24), and subsequently investigate the resulting
expression in the limitM —oo. The respective expressions
vanish asM —« for all states considered in this paper. This
—K2= w2+ K2=K2+D fact is intimately linked to our using the entirely covariant
© ’ Feynman parameter approach for the integration of the diver-
wherek, is the Euclidean 4-vectdt,= (w,k). We then ob-  gent terms. If we had used a noncovariant scheme of inte-
tain the energy shift due to the divergent terms proportiona@ration, as in Ref[7], then we would have had to take into
to account finite correction terms to obtain the correct result for
the Lamb shift. Note that thé&ivergenj spurious terms of
1 . nixni_lpi(|k|,w) order Z)?, which are present in all of the matrix elements
Z fo dxf d keT' P,en, Vanish after we have performed tH&k integration in
¢ the way outlined above, which includes final expansion in
The (straightforward angular part of these integrals can thee parameter.
be done by parametrizing the Euclidean 4-space as The terms inPI'gn which are finite when integrated with
w=Kcc08y, k1 =K,siny sinf cosp, k?=Kkesiny sindsing, and  the unrenormalized photon propagator do not need regular-

ks=kesiny cosg. We then haves=Kkecosy, [k|=kesiny. For jzation. It is easy to see th&", can be written as the sum of
the average over the four-dimensional angle, we utilize thgarms of the form

we have

formulas
(4) (4) =i a;([k[,w)
[ Soeosr=g. [ ooty P 3 [ 20— @
2 4’ 2 8’
whereq; is a polynomial injk| and w whose degree is less
dol¥ 5 ‘ i i
f e coy=— than 2n; —% to insure ultraviolet convergence. For thE4
272 64 state, e.g.P™ is given by

PIN = (Za)?[ — 4k?+ 3k?w + 6w — 3w|/[ 24(k?+ 20— ©?)®]+ (Za) [ — 147&* + 536°®+ 1040k *» — 5k®w + 288k 2w?
—1706*w?— 182w+ 525w — 280w* + 252k w* + 780w° — 103%2w® — 1350 + 5150 ]/[ 7680 k> + 2w
— 0?)°]+(Za)®[—20 759 04@°+ 10 142 5288+ 6 009 78%'°+ 10 895 366w+ 33 758 59R%w — 647 52&8w
—1437 62%%0»— 6 594 56K°w>+ 82 460 67R*w?— 69 269 008°w?— 25 414 6988 w2+ 26 987 52@°%w*
—178 944 864" w3+ 25 305 336°w3+7 163 62%% w3+ 19 783 68@*— 178 841 60R%w*+ 202 476 96@*w*
+40 645 648°»*— 73 651 20@°+ 300 512 24R%w°— 76 717 648*w°— 14 278 25@°w°+ 147 193 76@°
—242 508 00R%w®— 29 546 58B8*w®— 162 701 84@ "+ 80 109 408w’ + 14 229 25@*w’+ 99 157 52@°

+8 766 10&%w®— 28 049 56@°— 7 090 12%2w°— 460 25@ %+ 1 413 12%1]/[ 25 804 800k?+ 2w — w?)7].
(30)
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We have to calculate

SE - g2 f dwf k1 pin
=—ie‘m| —| —— .
: cu2m) (2m)% w2-Kk2 "
The quantityF defined by
a (Za)?
H:;mTFH (31)
in Eqg. (2) may be expressed as
FH=[n3/(Za)4]f doFH o), (32
Ch
where
1 k2 Dfin
Flo)= 5| dkl— Pk,

One can dispose of the factokg in the numerator of the
integrand using the following procedure. First wriké as

k’=Y—-2w+ w?,

so Y=k?+2w— w? corresponds to the denominator in Eq.
(29). The resulting expression is subsequently expanded. The
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imaginary part all along the contour of integrati@y, , the
positions of the poles of the integrand are well defined.

The branch cuts of the functiagf( ) can be readily iden-
tified. Due to the term sdim(w))w in the first term on the
right-hand side in Eq(34), there is a branch cut along the
positive real axis. This branch cut is caused by the photon
propagator. Due to the terniQ) in the second term on the
right-hand side in Eq(34), there is also a branch cut along
the line where the expressiéh=2w — w? assumes negative
real values. This branch cut extends fram=2 along the
positive real axis tow=o. It is caused by the Dirac-
Coulomb propagatofsee Fig. 1

It can be explicitly checked that the functidi w) satis-
fies the equation

Ho*)=—-Ho)*. (37)
We can divide the contou€y, in an upper contou€}, which
extends frome+i0* to »+i0*, and a lower contouc},
which extends frome—i0" to e—i0". We then have, due
to Eq.(37),

do Aw)= Jc' do Aw)+ qudw How)

Ch

=Fdw ]-"(w+i0+)+f€dw Fw—i0h)

€ ©

powers ofY cancel, and the result does not carry powers of

k in the numerator.

The integrand inF(w) can be written as the sum of terms

of the form

A= fdlkl S a2 -
=— a :
@07 2mi G (K2+ 20— w?)™M

(33

with suitable coefficients; . Thed|k| integration can then
be carried out using the formula

o 1 1

2n )M e g

B -1 +(_1)n71 O"nfl
2 sgrim(o))(w?+ Mo (M= Hon-1
| 1 (34
20 0?+Q)
where sgn is the sign function defined as
1 x=0
SII=1_1 <o, (35
We identify
Q=20w—0? (36)

in order to carry out the integration in E(B3). The formula

=f do f(w+i0+)+J do Flo+i0*)*

€ €

=j udw Hw)+c.c. (38
C

H

We restrict ourselves therefore to the upper con@jr and
understand that the complete result is the sum of the integral
along the upper contour plus its complex conjugate.

We then perform a change of variable to proceed to the
final dw integration. Defining

Eq. (34) deserves some comments. We are integrating along

the real axis. Because and ) both have an infinitesimal

Q+i
V0 e 39)
N
and
O 40
(u)=g A, (40
we have
FH=n3/(Za)4f du U(u). (41)
u(Cp)
Note that
Re2w— w?)tiw ; CY Re(w) c[e,2)
u= or w e y w)e|E€E, )
VR 20— 0?)—iw H
(42)
whereas
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JRE 02— 20)—w On Cyl, w and JQ can be expressed as functionswof
u= > for weCp,Rew)e[22), according to
Re(w—2w)+w
(43
where the argument of the square root is written in such a o= — 1 1-u?
way as to represent a positive real quantity in the two above 2 u '’

equations. Sa(w=0)=1, u(w=2)=—1, u(*+i0*")=0,
andue[—1,0) for we Cy ,Re(w) e[2°). So forwe Cyj,
Re(w)e[€,2), u has a nonvanishing imaginary part, i (1-u)(1+u)
whereas fow e C}, Re(w) e[2.%), u is a real quantity. The Vo=- 27 (—u
mappingw—Uu is one on one fow e Cﬂ.
Note that if we had chosen the lower contdli;, then
u(ee—i0*)=—oo. In that case, the above substitution wouldi.e., VQ extends along the negative imaginary axis for

not have had the desired propetty-0 for w— oo, Re(w)>2, ue[—1,0]. The result for/(u) (4P, statg is
|
= (zar] - L 1 el - AT 23 . 23 . 79
(W= = 155 =1+ w?| " ?®)"| ~ 20480 102401+ u)® ' 1024G—1+u)° T 40964 —1+u)2
13 13 1 6 141 737 39173
+ 3 3t 3| t(Za)” — . 6
20481+u)* 20481+u)®  245761+u) 41287 680 20643 840—1+u)
39173 2228617 3485527 4685519
10321 920—1+u)®> 206 438 400—1+u)* 206438 400—1+u)®> 330301 440—1+u)?
499 344 N 1267 3801 N 11765 2715
4608Qq—1+u) 614400 655361+u)® 655361+u)’ 1310721+u)® 327681+u)®
N 69 651 28 021 N 89779 ”
13107201+u)* 13107201+u)’® 15728 6401+u)?| (44)
|
The next step in the calculation is teeintegration, S0, in the limite— 0, the e-dependent term vanishes. Terms
of the form 1/(1—u)", however, introduce a divergence in

0 ~
FH=[n3/(Za)4]f du U(u)+c.c., (45) 1/e. We have
u(e+io™)

0 1 €1
where f du = . (49)
u(e+io™)  (1—u)" n—1

i 63/2

i0t) = i : 5/2
U(eti0)=1+i\2e- E_ﬁ+o(6) 9 \ye then add to the result of this integration the complex
conjugate, and subsequently expand in powers.ofhis
It is useful to define procedure is illustrated with some examples. For the terms
proportional to 1/(+ u)?, we have
- ie3?
e=1-u(e+i0")=—i\2e+tet——=+0(e)%2 (47)

0
2.2 f du—t -1 1, (50)

u(e+io™)  (1—u)? €

Note that thee prescription calls for carrying out the inte-

gration fromu(e+i0") to 0, and subsequently expanding S0

the result in powers of up to °. For those terms which are

finite when integrated from 1 to 0 we may carry out this

integration without regarding the dependenceeorior in- fo du 1 tec

stance, ueriot)  (1—-u)2

fo 1 1-2tn N
du = +0 , 48 =2-
uetiot) (1+u)” n-1 (ve) &

all P

1
_?
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1 1

:2— —_—
—i\2e+e+0(€)*? i\2e+e0(e)3?

! +O(e)l/2) ( S %+0(e)1’2

[ =

=2-1+0(e)¥?’=1+0(e)*2 (51)

For terms proportional to 1/(1u), we have

fo d 1 In(e
u(e+io™) u(l—U)_n(e)’

(52

SO

0 1
f du——+c.c.
u(e+ioty 1—uU

=In(e)+In(ex)

=In[—iy2e+O(e)]+In[iV2e+0(e)]

=—ig+ig+2In(\/Z)+O(e)1’2

=In2+Ine+O(e)*2 (53)

Note that for constant terms, this results in

0
f duX const+c.c= —2X const- O(€)2 (54)
(e+io™)

u

Using the results Eqg51) and (54), it is easy to show that
the spurious terms of ordeZ)? in expressior(44) vanish
after the finalu integration.

The final result for the high-energy partR4,, state is

24 409 499

86400 720

Fr(4Pyy)=— 5 +(Za)’ Zop(IN2+1ne) —

90e
(55

Here we give the complete results for the high-energy parts

of the other states treated in this paper:

(3P = — =+ (zay] 222L 208 o
W8P == 5+ (20 70550~ 205 M2 )~ e !
(56)
e ap L, 5067903 148
H(3P3n) = 15+ (20)° 192200 205 M2+ e~ g1 |
(57)
ip L, o[31399 137
Fu(4P3p) = +( a)? —86400_ﬁ)(n Ne)— 90e
(58

IV. LOW-ENERGY PART

The low-energy part of the energy shift originates from
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electron propagator in powers of the binding field. We have
to treat the binding field nonperturbatively. An expansion in
powers of Za) is accomplished by considering the spatial
momenta of the virtual photon and the electron momenta as
expansion parameters.

Choosing the Coulomb gauge for the photon propagator,
one finds that only the spatial elements of this propagator
contribute[1]. The w integration alongC, is performed first,
which leads to the following expression fg&j :

d3k

E =-— eZPf —— 5"l
lk<e (27)32|K]|

X<¢|aieik~r aje—ik~r|¢>

(w=Ik]). (59

Hp denotes the Dirac-Coulomb HamiltoniaHp=a-p
+pBm+V, &' is the transverse delta function, and refers

to the Diraca matrices. The principal value of the above
integral is the real quantity corresponding to the energy shift
in one-loop order. The imaginary part of tlk integration,
which leads to the decay width of the state, has been dropped
in Eg. (59). In the matrix element

Pl =y el e y),  (60)

1
- = .«

we introduce a unitary Foldy-Wouthuysen transformation
U,

1
UHp—(E,—w)]U"*
X (Udle ™ Tu™)|uy).

Pi=(Uy|(Ua'e™"u")

(61)

The lower components of the Foldy-Wouthuysen trans-
formed Dirac wave functions vanish up to Z«)?, so that
we may approximatéU ) by

Uy)=|¢)+|o¢) with (¢|o4)=0,

where |¢) is the nonrelativistic(Schralinger-Pauli wave
function, and| §¢) is the relativistic correction.

We define an operator acting on the spinors as even if it
does not mix upper and lower components of spinors, and we
call the odd operator odd if it mixes upper and lower com-
ponents. The Foldy-WouthuyséRW) Hamiltonian consists
of even operators only. For the upper lefk2 submatrix of
this Hamiltonian, we find the resuli3]

(62

whereHg refers to the Schidinger Hamiltonian, andH is
the relativistic correction,

(p)*  7(Za) (Zar)
8m3+ S(r)+ 5 SU'L.

SH=—
2m? 4m?r

(64)

low-energy virtual photons. The energy of the photons is
comparable in magnitude to the binding energy of the elech is interesting to note the reason why we can ignore the
tron [order Z«)?]. Therefore it is impossible to expand the lower 2x 2 submatrix of the FW Hamiltonian in our scheme
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of calculation. The lower X 2 submatrix contains the terms p' _
_elk-r+ 6y'
m

—m—(E,—0)~—2m as the dominatingZ«)° contribu- Pl=(¢+ 56|
tion. Therefore the integral vanishes in the linait>0. This

can be checked by considering the integral in E9), in- 1 [pi ikr j

serting a spectral resolution for the Dirac-Coulomb propaga- X Ho— (E— )+ 6H— 5E[Ee +0y! ||+ o).
tor, and performing the integral ovefk after suitable angu-

lar averaging. The upper>22 submatrix has no Za)° (68)

contribution, because terms proportionahtandE,, cancel.
This submatrix contributes to the Lamb shift. Now we turn to
the calculation of the Foldy-Wouthuysen transform of the
operatorsa'expk-r). The expressiot) o'exp(k-r)U* is to pP= T(sT,iJ pii_ (69)
be calculated. Assuming thab=|k| is of the order 2

O((Za)?), we may expand the expressidhe'e® U™ in
powers of Za). The result of the calculation is

We now define the dimensionless quantity

Up to (Za)?, we can write the matrix elemef as the sum
of the contributiong Egs. (70)—(75)]. The leading contribu-
o . 1 tion (the “nonrelativistic dipole’) is given by
Ua'e* Ut =a/[1+i(k-1)=3(k-1)?]= —p'(a-p)
2m? 1 _
_ i = A
+ 9y 1+i(k-1) = }(k-1)2] == p'p? -
m 2m The other contributions t® are[1] as follows:
1 1 (i) the nonrelativistic quadrupole,
-« i T 0. i
o o) gy (ke n(kx ) 1 1 -
Prg=z—(olp'e" ' ——=—=p'e""|¢)—Puq;
i 9 3m Hs— (E—w)
_ 0 i (71
2m7(k><2)- (65)

o _ _ (i) the corrections to the current' from the Foldy-
In the limit e—0 the odd operators in the above expressionyouthuysen transformation,

do not contribute to the self-energy i@ &)? relative order,
because, up ta«)? relative order, these operators only join N ‘ 1 o
the upper components of the wave function with the lower Poy= 5T’”<¢|éy'mpje_'k'r|¢>: (72)
components of the Dirac-Coulomb Hamiltonian. This contri- s
bution vanishes, as described. So one can neglect the odd (ii ) the contribution due to the relativistic Hamiltonian
operators. By using symmetry arguments, it can be shown
easily that the last term in the above expresgmoportional
to kXX) also does not contribute to the Lamb shift in P g,=—
(Za)? relative order fore—0.

Because we can ignore odd operators, and because the
lower components of the Foldy-Wouthuysen transformed
wave function vanish, we keep only the upper lek 2 sub-

1 1 4
am P E— o) MR E—a) PP
(73

(iv) the contribution due to the relativistic correction to

matrix of Eq.(65), and we writeUa'e*"U™ as the energy,
ey P L P o= (4IP Pe Pl
ua'e'k-'u+zE[1+i(k-r)—%(k-r)2 ——p'p’ °E""3m Hs—(E—w) Hg—(E—w) :
2m (74
— 2 (1x@) + o (k) (kX ) and
2m?2 3 2m ’ (v) the contribution due to the relativistic correction to the
wave function,
(66)
; : 2 . 1 _
This can be rewritten as - i ___pi
Ua,ieik~rU+=p eik~r+5yi, (67)

Almost all of the above contributions are calculated using a
. coordinate space representation of the Sdimger Coulomb
where 8y' is of order Za)?. It is understood that the term propagator given in Ref§1] and [15]. Formulas given in
(p'/m)e'*" is also expanded up to the ordet«)®. Denot-  Refs.[17] and[16] prove useful for the summation over the
ing the Schrdinger energy by [E=—(Za)?m/n? for nP  intermediate quantum numbers. For the nonrelativistic quad-
stateg and the first relativistic correction #® by 5E, we can  rupole contribution, however, we use the momentum-space
thus write the matrix elemem" as representation due to Schwindd9],

m
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AT 2
G(p,p',Q)=4TrmX3( e )de prr17p ! ., (76
2sinm) J1 dop [X¥p—p )2+ (P?+ XA (p'2+X?)(1-p)%(4p)]?

whereX=+—2mQ, r=ma/X. For nonintegerr, one may further detail. Evaluations for this part of the calculation
replace the complex integration around the origiim the  were done onBM RISC/6000 and SGI POWER ONYX Systems

positive senseby a much simpler integral: with the help of the computer algebra SySt®IKTHEMATICA
_ [14].
e\ fot o The final » integration is done by a change of variable
(23im”) L dp p g(p)ﬁfo dp p~"9(p). (77)
B 1
We then perform the calculation &fyq in momentum space w—t where t= J1+(2n2w)/[(Za)®m] (78)

using formulas given in the paper by Gavrila and Costescu
[18]. The momentum-space wave functionsPobtates were (t=0 corresponds te»=, andt=1 corresponds te=0).
given in Ref[19]. Calculations folPyqo become increasingly As an example for & matrix element, we give here the
complex. It should be noted that in the case of tRewlave  result for a contribution toPsy(4P,,), caused by the
function, one has to deal with intermediate expressions of uRussell-Saunders coupling term in the Foldy-Wouthuysen
to 20 000 terms. We do not describe these calculations in anyansformed Dirac Hamiltonian:

i 1 [ @ 1 i
PLS(4P1/2):<¢|p HS_(E¢_U-))\_4m2I’30L HS—(E¢—w) p |¢>

=(Za)?[16 384 354 t)t8( — 14 2t)(1+2t)(— 1+ 4t)(1+4t)(—5+9t%)2)/[(675 — L+ 1)2(1+1) ¥+ (Zar)?
X [8192D ,5(1)t8(— 1+ 2t)(1+2t)(— 1+ 4t)(1+4t)(—5+9t2)2]/[675 —1+t)?(1+1)]
—(Za)?[16 384V o5(1)t8(—1+2t)(1+2t)(—1+4t)(1+4t)(—5+9t%)2]/[675 —1+1)%(1+1)14]
—(Za)?[16F 4(1)t5(—5+9t?)(5+9t2) )/[45( — 1+1)3(1+1)]— (Za) [ 4096yt7(1+ 2t) (1 +4t)
X (—5+9t%)%(— 630+ 2988 — 22 67712+ 322 539%— 1 308 681*+5 929 071°— 20 884 418°
+53 752 275" — 124 047 788+ 233 683 811°— 362 131 987+ 489 361 437! 552 966 475"
+526 774 70113 433 556 447+ 298 335 8891°— 171 601 869'°+ 84 114 837''— 33 425 148'8
+10 588 500'°— 2 811 264°°+ 536 448%'— 64 5122°+92168%9)]/[675 —2+1t)(—1+1)8(1+1)%4
X (—3+2t)(—7+4t)(—5+4t)(—3+4t)] +(Za) [ t*(54 385 222 508 13 984 771 500
+15573 367 761 525+ 137 704 964 619 608— 1 186 676 073 750 825— 891 514 989 328 950
—18 753 057 125 404 81%+ 257 731 557 911 828 220- 644 138 132 939 443 685
—162 189 845 176 905 698+ 5 703 957 333 855 251 8658— 40 461 889 136 476 779 376
+179 879 463 449 806 219 483— 470 465 622 621 377 811 686+ 722 355 119 079 050 313 4¢t
—285 989 274 333 023 499 862— 2 287 627 466 701 513 790 1639+ 8 721 622 433 626 707 698 70
—17 878 002 921 800 012 898 (P4+ 22 584 212 519 300 184 263 A92
—11 732105 237 171 234 433 58— 22 234 628 025 915 862 014 32
+73 751 337 137 966 874 205 433-118 367 926 111 467 660 583 168

+122 509 973 591 672 089 703 23368 708 753 123 836 196 116 438
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— 27553239 135 523 122 581 40638+ 126 820 257 213 436 783 378 #20

—189 954 960 243 232 498 928 @39+ 199 312 481 720 191 257 908 233

—164 901 212 087 123 003 552 #9+ 112 286 946 900 261 699 896 (44

—64 112 830 789 916 243 409 478+ 30 834 230 557 497 197 343 A32

—12 455 975 426 801 658 077 884+ 4 211 137 005 166 537 183 048

—1 183 248 309 588 246 704 096+ 270 125 031 800 068 986 466

— 48193573 673 016 712 764+ 6 583 393 931 443 034 11

—691 086 520 295 792 649+ 41 007 381 492 105 216+ 1 314 475 331 420 16¢7)]/

[425 250 —2+1)%(—1+t)21+1)?4(—3+2t)%(—1+2t)(— 7+4t)2(—5+4t)2(—3+41)2(—1+41)]

+(Za)?[81928(— 1+ 2t)(— 1+4t)(—5+9t?)%(3+6t+3t>+8t3)In[2/(1+1)]V[67H —1+1) (1 +1)®]

+(Za)?{16G,(t)t5(—5+9t2)(— 1125+ 2400 + 145 390%— 19 200yt>— 148 32@°— 2 026 412*

+418 560/t*+ 1 027 200°+ 7 316 050°— 1 920 000G/t°— 1 382 4007 — 7 444 1438+ 2 211 8408

—1920Q%In[2/(1+t)]+418 56@*In[2/(1+t)]—1 920 00@°In[ 2/(1+1)]

+2 211 84@8IN[2/(1+1)])}/[10 125 —1+1)8

X (1+1)8] +(Za)[ 256 7( — 5+ 9t?)?(8+ 45t — 3052 — 1753+ 283*— 265 °+ 3421°+ 3957

+4338)In[(2t)/(1+1)])/[675 —1+t)2(1+1)7], (79

where
Fa(t)=,F,{1,—4t,1-4t,[(t—1)/(t+1)]%, (80
“ O [(t—1)/(t+1)]¢
Fadt) =S,

d
X%(zFl)[—k,6,6,2(1+t)], (82

Z O [(t—1)/(t+1)]%

Pos(t)= 2, Goatik? (83

X

©

[(t=D/(t+1))*
Vel =2 Goatrg V(kt6), (84

where V' denotes the logarithmic derivative of thefunc-
tion. The quadratic singularity in the result f& .g(4P 1)

in Eq. (79) at t=3 [given by the 3+4t)? term in the
denominator of the purely rational functibnorresponds to
the decay into the3 state. One can check explicitly that the

with two propagators. The quadratic singularities are a con-
sequence of the perturbative treatmentséf in the propa-
gator 1[Hg+ 6H — (E 4+ 6E— w)] [expansion indH is not
allowed in the vicinity of a pole of the resolvent
G(E)=1/(Hg—E)]. The integration procedure for the qua-
dratic singularities is as follows: first we isolate and calculate
analytically the integral of the term that gives rise to the
singularity(as a function of), then we take the difference of
the edge terms dat=1 and 0. This procedure takes back the
effect of the perturbative treatment, and assigns the correct
value to thet integral. As the final step, we subtract the term
that gave rise to the quadratic singularity, and proceed with
the rest of the terms in the usual way described in REf.

The integration procedure deserves some further com-
ments. We also encounter in the matrix elements singulari-
ties of linear type at=4, 3, and3, which also correspond to
the decay of the excited state. The residue taken at these
singularities yields the decay width of the respective states.
In order to obtain the principal value of theintegral, one
has to symmetrize the integrand around all the singularities.
This is also accomplished by symbolic procedures written in
the computer algebra languag@THEMATICA.

The results of the calculations have been checked in many

insertion of corresponding intermediate states in the spectra¥ays. An important cross-check is the cancellation of
decomposition of the propagators necessitates the existeneedivergent terms in the sum of the high- and low-energy

of quadratic singularities in thB matrix elements, and that

parts. By considering the expansion of the propagators in

the quadratic singularities occur only in the matrix elementgpowers of 1b, the logarithmic singularities of all contribu-
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TABLE |. Contributions of relative orderZa)? to the low-energy parE, for the 3P, and 3P, states.

Contribution P 3P3p

Frg —1.433 010(1)- 248/405 If(e/ (Za)?) —1.433 010(1)- 248/405 Ir(e/ (Za)?)
F oy 0.922 653(1)-20/81 In(e/ (Z&)?) 0.629 717(1)-20/81 In(e/ (Za)?)
Fsu 0.356 318(1)- 73/324 Il (Z)?) 0.333 053(1)-55/324 In(e/ (Za)?)
Fse 0.040 651 9(1¥ 1/36 In(e/(Za)?) 0.013 551(1) 1/108 Ine/ (Za)?)
Fse —0.830 340(1)-40/81 In(e/ (Za)?) —0.236 869(1)13/108 In(e/ (Za)?)
sum —0.94 378(1) 268/405 Ife/ (Za)?) —0.69 356(1)+ 148/405 Ife/(Za)?)

tions can be calculated individually, and agree with the re-and
sults obtained from complete evaluation.
The contributions to the low-energy paft in (Za)? 4
relative order are given in Tables I and Il. Summing all con-  FL(4P32)=— §|nk0(4|:’)+(2a)2
tributions, we obtain the following complete results for the

contribution of the low energy parts, : €

ﬁ)ln—(zmz
4
FL(3Pyp)=— §|nko(3P)+(Za)2 (88

0.730 571) + —
x| ~0.730 571+ go-

V. RESULTS AND EVALUATION OF THE LAMB SHIFT

094371+20+268| <
L)+ o— 205N (Za)2

' Summing the contributions from the high- and low-
energy parts, we obtain the following results for the sc&led
85) function defined in Eq(2):

F(3Pyp)=—3%—%Inko(3P)+(Za)?
FL(3P3p)=— glnko(BP)+(Za)2 X{—1.147 681)+ 228In[(Za) 2]}, (89

F(3Pg) = 1; — 3Inko(3P) +(Za)?

20 148 €
—0.693 561) + o : x{—0.597 561)+ soen[ (Za) 2]}, (90)

1 + mm—(za)z

(86) F(4Py) = —%—2Inky(3P)+(Za)?
X{—1.195681)+ 22n[(Za) 2]}, (91

4
FL(4P1/2): — §|nk0(4P)+(Za)2 F(4P3/2)=%—%Inko(3P)+(Za)2

X {—0.630 941)+ $In[(Za) 2]}. (92

23
—~0.997 801) + go-+ ool ——

The results obtained fok, , andAg  are in agreement with
those previously knowf3]. The values of the Bethe loga-
(87)  rithms[5,6]

TABLE II. Contributions of relative orderZa)? to the low-energy parE, for the 4P, and 4P, states.

Contribution P,y 4Py

Frg —1.512 220(1} 229/360 If{e/ (Za)?) —1.512 220(1) 229/360 If{e/(Za)?)
Fay 0.966 398(1)23/90 Ine/(Za)?) 0.662 154(1)-23/90 Ine/ (Za)?)
F s 0.364 541(1) 2891/11 520 Ie/(Za)?) 0.342 940(1)-439/2304 Ife/ (Za)?)
F s 0.033 550 4(1¥ 13/768 Ine/(Za)?) 0.012 904(1)5/768 Ine/ (Za)?)
Fse —0.850 066(1) 787/1440 Ife/ (Za)?) —0.236 345(1) 53/288 Ine/(Za)?)

sum —0.997 80(1)- 499/720 I/ (Za)?) —0.730 57(1) 137/360 Ir{e/ (Za)?)
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Inko(3P)=—0.038 190 281), the numerical data, it must be taken into account that, as
noted by Karshenboimi20], A, coefficients vanish folP
Inky(4P)=—0.041 954 801) (93 states. Values oRg o and Ggg ; for 2P states are given in

- . _ . Ref. [1]. We use the following implicit definition of the
could be verified numerically with a seven-figure accuracy| gmb shift £:

from our analytic expressions by numeri¢@aussiahinte-

gration. ForAg,;, we use the following general formula mr2

which may be extracted from the work by Erickson and Yen- E=m[f(n,j)—1]— m[f(n,j)— 1%+ L+ Epgs,

nie [Ref. [4], Eq. (4.43 ibid., upon subtraction of the N (100
vacuum polarization contribution implicitly contained in the

quoted equatiof where E is the energy level of the two-body system and

f(n,j) is the dimensionless Dirac energy, is the electron
mass,m; is the reduced mass of the system, amg is the

4{ 8{3—[1(1+1)]/n2} nuclear mass. It should be noted that we consider the hfs-fs
=1(1-60) mixing term as a contribution to the hyperfine structure. The
3 (2I=1)(@h(2+1)(21+2)(21+3) small hfs-fs-mixing correction, which is discussed in Ref.
[21], mixes theF =1 sublevels of thé,, andP5, states and

A6,1(ni| !J)

+85 1= i 4 35_ o+ d = ﬂl shifts the center of the hyperfine levels. It should be taken
W T p2i[10 7 471 V2E T EL0 940 into account when the fine structure is deduced from preci-
sion experiments.
77 In order to calculate the Lamb shift, we include the
_@Jﬂ In2+3[y=Inn+¥(n+1)]1+, (94  Barker-Glover correction to hydrogen energy levi2e],

which we refer to as theZa)* recoil correction. We also

wherey is Euler's constant, an refers to the logarithmic  include the Za)® recoil correction calculated by Salpeter
derivative of thel' function. ForP states (=1), this for- [23], and the result§24] for recoil corrections of order

mula reduces to (Za)®m, /my. The results for recoil corrections of order
(Za)®m, /my have been confirmed by Pachu¢kee Chap. 5
41 2 1\1/1 1 of Ref.[1]). We include contributions from the higher-order
Aa(nL])=3 1—5< 3- E) + ( 1- ?) o Z5j,1/2) , two-loop correction of order ¢/ w)%(Za)®In?(Za)~? corre-

(95) sponding to theBy , coefficient[25], and for three-loop cor-
rections in lowest order. The theoretical error from the two-

and is in agreement with our results. From our resultsfor 100p contribution B¢ ; and higher termsis estimated as half

we extract the following values for the coefficiers,o: the contribution from the recently calculated , coefficient
[25]. The higher-order contributions due to vacuum polariza-

Ao 3P12) =—1.147 681), Ag(3P3p)=—0.597 561) tion of order a/m(Za)® can be obtained by analyzing the
(96)  small distance behavior of the Dirac wave function, i.e., by
and evaluating the matrix element of the Uehling potentste
e.g.,[26)),

Ag 4Py =—1.195681), Ag(4Pz,)=—0.630941).
97)

The results forAg o are the main results of this work. They
are in excellent agreement with data obtained from numeri-
cal calculations by one of the authdfs.J.M) and Y. K. Kim with P-state wave functions expanded in power<Zaf. We
[2]. Mohr and Kim calculated th& function defined in EQ.  gptain the results

(2) numerically forZ= 10, treating the binding field nonper-

a(Za)| 4 1 V? .
va(f)=7 —1—55(”—3—,‘_3?5(0“3(V ()|,

(101

turbatively. By extrapolating their numerical ddi to the 3 n2—1
region of smallZ, we obtain the following estimates for the B NPy =— = 5 (102
remainder functiorGsg ; implicitly defined in Eq.(2): 35 n
GSE’7(3P1/2,Z: 1):36i05, and
Gsg 43P3,,2=1)=2.6=0.5 (99 2 n>-1
sed3Pan AB (NP = — o —— (103
105 p2
and
Gse{4P1p,Z=1)=3.9+0.5, for the leading term. We have also evaluated the contribution
' of the Uehling potential numerically without expansion in
Gsg A4P3,2=1)=2.8+0.5. (99)  Za, with the results

The uncertainties iGsg yare used to estimate the theoretical Gy #(3P1,,Z2=1)=0.0455, Gy «3P3,,Z2=1)=0.0249,
uncertainty from the one-loop contribution. When modeling (1049
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TABLE lll. Contributions to the Lamb shift in kHz for theR,,  netic form factorF,(q?=0) which persists. The calculation

and 3Py, states. of the contribution to the Lamb shift is then straightforward.

We obtain the following theoretical results for the Lamb
Contribution Py (kHz) 3Pg;, (kHz) shift of 3P and & states:
one-loop self-energy —3477.349(5) 4046.413(5)
two-loop self-energy 7.705(23) —3.782(23) L(3Pyp)=—3473.7%83) kHz, (106
three-loop self-energy —0.064 0.032
vacuum polarization -0.122 -0.027 L(3P3)=4037.7§3) kHz, (107
(Za)* recoil 0.641 —0.320
(Za)® recaoil —4.705(13) —1.915(13) L(4Py,) =—1401.521) kHz, (108
(Za)® recaoil 0.139 0.139

L(4P3)=1767.301) kHz. (109

Sum for 3P —3473.75(3) 4037.75(3)

The theoretical values for the fine-structure splitting, using
the 1987 Cohen-Taylor value af *=137.035 989 5(61)
and [27], are as follows:

Gy #4Py1,,2=1)=0.0480, Gy #4P3,,2=1)=0.0262, AE(3P)=3250089.83) kHz, (110

(105
AE(4P)=1371130.01) kHz. (111

where the functiorGy ; is defined in analogy witltGgg 7.
The contribution of the higher-order terms is negligible com-
pared to the uncertainty in the higher-order self-energ
terms. The Wichmann-Kroll vacuum polarization contribu

. - 2 . .
tion is expected to be of ordeZ¢)” times the Uehling the quoted uncertainty would yield a value @fimproved

cor_lr_(re]cUoB, \?n?nlsnrt]imnlnglleﬁtdriEetrie.n to the Lamb shift ar with respect to the 1987 value. Given the scattering of avail-
. € above-mentioned co utions 1o the Lamb Shilt are, o (414 for [28], such a determination could be useful for
listed in Tables Ill and IV for the states under investigation.

it should be noted that the reduced mass dependence of tt%:hecklng the consistency of measurements coming from dif-

. ! Srent fields of physics.
L‘;T; :Cglrjstthzel_rgrs;griﬂi'f? k_)l_zgrsr%zt%vr?]?ctho g?;aéghgzgoge%e The formula for the fine structure as a function effor
: : =0 DYy 1€, 1omic hydrogenZ=1) is as follows:
anomalous magnetic moment of the electron acquire a factor
(m, /mg)? (wherem, is the reduced mass of the system, and _ B
m. the mass of the electrpnall other contributions to the AB(n)=E(nPs) ~E(NPy)

Lamb shift acquire a factomg, /m.)>. In addition, the argu- 2,,3 2

For 2P states, the theoretical value iAE(2P)
=10969 043(1) kHZ1]. The uncertainty in the theoretical
Xalues for the fine-structure splitting is given by the uncer-
“tainty in . Any determination of the fine structure beyond

ment of the logarithms [itZ&) 2] must be replaced by =
In[(me/mZa)"2]. The relevant formulas are also given in

Ref.[3].
+ a4<

2n®  2nd 2mn®

a?y? 7y 9y 3y

It should also be noted that for two- and three-loop cor- + + - =
7°n® 31 16n* 4n®

rections in respective lowest ordera/(m)?(Za)* and
(el 7)3(Za)?, only the anomalous magnetic moment of the

electron contributes to the Lamb shift fér states, because xy?
the Dirac form factorF,(g?) is infrared finite in two- and +4n5(1+x)
three-loop order. So it is only the contribution from the mag-
| aly?  2y° 1 n?-1
TABLE IV. Contributions to the Lamb shift in kHz for the ta®l — 5+ —| AAgdn)+ 5 =
4P, and 4P, states. mnT o mn n
Contribution ®,,, (kHz) 4P, (kH2) in®-1
12 312 ~3 In(y *a™ %)
one-loop self-energy —1403.102(2) 1770.887(2)
two-loop self-energy 3.252(10) —1.594(10) ] 2y3 31y 45y 7y
three-loop self-energy —0.027 0.014 +a —3AG(n) + 3t 2+ 5
vacuum polarization —0.054 —-0.012 mn 256" 12&n"  64n
(Za)* recoll 0.270 —-0.135
4 1
(Za)S recoil —1.915(5) —1.915(5) _ iyﬁ +iy7 ] +8Ly(n), (112
(Za)® recoil 0.061 0.061 32n°  16n
Sum for 4P —1401.52(1) 1767.30(1) where the theoretical uncertainty in the difference of the

Lamb shift of nP states is given by
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SLy(2)=80 Hz, 8Lp(3)=30 Hz, &L4(4)=10 Hz.

(113
The mass ratios are
x=mg/m, and y=m./me=1/(1+x). (114
AAgo(n) andAG(n) are defined as
AAg o) =Aso(NP32) = Ag (NP1,
AG(n)=Gsg ANP3;) —Gsg ANPy). (119

For practical purposes, thedependence oh Ggg {n) may
be suppressed, because it is a very small contribytiothe
1-Hz rang¢, and we may assumAGgg {n)~—1.0. The

1755

structure might be within reach in the near future. Such a
determination of the fine-structure constantfrom the ef-
fect on which its name is based, would complement other
high precision determinations from solid-state physics and
the anomalous magnetic moment of the electron.

We note that there are deviations of experimental data for
excited nSnP transitions from theory by more than one
standard deviation but less than two standard deviatiees
Ref.[21], and references thergirHowever, both the theory
of the Lamb shift and spectroscopic techniques have im-
proved since the measurements were made, so one might
expect a more precise comparison of theory and experiment
in the future. The present uncertainty in the theory would in
principle allow a determination of the fine-structure constant
with a relative uncertainty of less than five parts in®.10

two- and three-loop coefficients to the anomalous magnetigjowever, at this level of precision additional theoretical

moment are given bj28]

al?=—0.328 478 965, aP’=1.181 241 56. (116

VI. CONCLUSIONS

work might be needed to address questions such as asymme-
tries in the natural line shape. We only mention that, for
excited states, an experimental determination of the fine
structure could be simplified by the slower decagprrower

line width) of the higher excited® stated 8].

The analytic calculation of higher-order binding correc-
tions to the Lamb shift of exciteB states has been described
in this paper. We provide more accurate theoretical values of The authors thank D.F.G. for continued supg@ontract
the Lamb shift for ® and 4 states in hydrogenlike systems. No. SO333/1-2 We would like to thank K. Pachucki,
We also give a formula for the fine structure as a function ofS. Karshenboim, and J. Sims for stimulating and helpful dis-
a (for 2P, 3P, and & state$, which may be used to deter- cussions, and J. Urban for carefully reading the manuscript.
mine « from an improved measurement of the fine structureP.J.M. acknowledges the Alexander von Humboldt Founda-
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