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Lamb shift of 3P and 4P states and the determination ofa

U. D. Jentschura,1,* G. Soff,1 and P. J. Mohr2,†

1Institut für Theoretische Physik, TU Dresden, Mommsenstraße 13, 01062 Dresden, Germany
2Atomic Physics Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899-0001

~Received 6 March 1997!

The fine-structure interval ofP states in hydrogenlike systems can be determined theoretically with high
precision, because the energy levels ofP states are only slightly influenced by the structure of the nucleus.
Therefore a measurement of the fine structure may serve as an excellent test of QED in bound systems, or
alternatively as a means of determining the fine-structure constanta with very high precision. In this paper an
improved analytic calculation of higher-order binding corrections to the one-loop self-energy of 3P and 4P
states in hydrogenlike systems with a low nuclear charge numberZ is presented. The method of calculation has
been described earlier by Jentschura and Pachucki@Phys. Rev. A54, 1853~1996!#, and is applied here to the
excited P states. Because of the more complicated nature of the wave functions and the bound-state poles
corresponding to decay of the excited states, the calculations are more complex. Comparison of the analytic
results to the extrapolated numerical data for high-Z ions @Mohr and Kim, Phys. Rev. A45, 2727 ~1992!#
serves as an independent test of the analytic evaluation. Theoretical values for the Lamb shift of theP states
and for the fine-structure splittings are given.@S1050-2947~97!08408-4#

PACS number~s!: 12.20.Ds, 31.30.Jv, 06.20.Jr

I. INTRODUCTION

Evaluations of the radiative corrections in higher order for
bound states are an involved task because of the appearance
of a multitude of terms, and because of the difficulties asso-
ciated with bound-state formalism. In this paper, we present
an improved calculation of higher-order corrections to the
one-loop self-energy of an electron in an excited 3P or 4P
state@1,2#.

For the contributiondESE of the one-loop radiative cor-
rection to the Lamb shift of a bound electron, we have the
following nonanalytic expansion in powers ofZ times the
fine-structure constanta,

dESE5
a

p

~Za!4m

n3
F, ~1!

where

F5A4,1ln~Za!221A4,01~Za!A5,01~Za!2

3@A6,2ln
2~Za!221A6,1ln~Za!221A6,01~Za!GSE,7#.

~2!

The remainder functionGSE,7 is of order 1, and is comprised
of the termsA7,0 and higher coefficients. CorrectionsA4,1,
A5,0, andA6,2 vanish forP states. The termsA4,0 ~see, e.g.,
Ref. @3#! andA6,1 @3,4# are known analytically. The termA4,0
contains the Bethe logarithm which has been evaluated to 12
significant figures@5,6#. Results have not been obtained for

A6,0 coefficients. In this paper, we present an evaluation of
the A6,0 coefficients for the 3P1/2, 3P3/2, 4P1/2, and 4P3/2
states. The results lead to improved values for the Lamb shift
of the respective states, and to a new theoretical value for the
fine-structure splitting. We give an explicit formula for the
fine structure of the 2P, 3P, and 4P states as a function of
the fine-structure constanta, which can be used to obtain a
value ofa from experimental data.

In this paper, we briefly compare some of the methods
that have been developed for the treatment of the one-loop
problem. We give a brief account and illustrate the useful-
ness of thee method@1,7# for analytic evaluations. We then
describe the evaluation of the high-energy part to the self-
energy, with a focus on details of the integration procedure.
We then proceed to the low-energy part. Results of the cal-
culation are given, and specific contributions are discussed in
detail.

II. VARIOUS METHODS OF TREATMENT
OF THE ONE-LOOP SELF-ENERGY

Using units in which\5c51 and e254pa, we can
write the integral corresponding to the one-loop self energy
of an electron bound in a Coulomb field,

dESE5 lim
M→`

2 ie2E
CF

dv

2pE d3k

~2p!3
Dm,n

reg ~k2,M !

3K c̄Ugm
1

p” 2k”2m2g0V
gnUcL 2^ c̄ udm~M !uc&,

~3!

where Dm,n
reg (k2,M ) is the Pauli-Villars regularized photon

propagator„in the Feynman gauge, we haveDmn
reg(k2,M )
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52gmn@1/k221/(k22M2)#…. The termdm(M ) in Eq. ~3! is
the one-loop mass counter term as a function ofM ,

dm(M )5a(3/4p)m@ ln(M2/m2)11
2#. c̄5c†g0 denotes the

Dirac adjoint. It is straightforward to derive Eq.~3! with the
Feynman rules of QED. By rescaling all variables to the
electron mass scale,

v→mv8, k→mk8, p→mp8,

V→mV8, M→mM8, ~4!

we have

dESE52 ie2mE
CF

dv8

2p E d3k8

~2p!3F 1

k82
2

1

k822M 82G
3K c̄Ugm

1

p” 82k” 8212g0V8
gmUcL

2^ c̄ udm~M 8!uc&. ~5!

In this paper we will use variables rescaled to the electron
mass, and suppress the prime of the rescaled variables in the
sequel. Note that in our system of units, we have~e.g.! for
the Bohr radius of the atomaBohr51/(Za). By contrast, in
atomic units, which are used, for example, in Ref.@8#, we
would have the Bohr radius of length unity.

The analytic properties of the propagators determine the
location of the poles in the integrand in Eq.~3!, as indicated
in Fig. 1. The original Feynman prescription calls for inte-
grating the photon energy along the contourCF . For the

actual evaluation of the Lamb shift, however, a different con-
tour of integration is used by most authors. Taking advantage
of the analytic properties of the integrand and of Jordan’s
lemma, one can change the Feynman contour in the complex
plane without changing the result of the calculation. Here we
compare the contour used in Bethe’s original derivation of
the Lamb shift, the contour used by Mohr in Refs.@9–12#,
and the contour used in Pachucki’se method, which is used
in this paper.

Mohr’s and Pachucki’s methods both depend on a divi-
sion of the calculation into low- and high-energy parts.
Mohr’s method relies on the contourCM in Fig. 2. His low-
energy part is determined by the part of the contourCM
where Re(v),En. The residues of the poles of the photon
propagator only contribute to low-energy part in this case. It
can be shown that the low-energy part is given by the for-
mula

DEL5 lim
d→01

F a

p
En2

a

4p2Ek,En

d3k
1

kS d i j 2
kikj

k2 D
3K cUa ieik•r

1

HD2En1k2 id
a je2 ik•rUc L G ~6!

@cf. Eq. ~3.8! in Ref. @9#; HD is the Dirac Hamiltonian#. This
contribution contains terms of lower order in (Za) than
(Za)4. The spurious lower-order terms cancel when the low-
and high-energy parts are added in that method. The high-
energy part is obtained by Wick rotating the Feynman con-
tour for v integration along the line with Re(v)5En . In the
nonrelativistic limit, expression~6! corresponds~up to the
term a/pEn) to what would be expected to be the self en-
ergy of the electron in terms of traditional second-order per-
turbation theory due to transverse modes of the electromag-
netic field,

DEL
~2!5Re~DEL!2

a

p
En

5(
n8

PE
k,K

d3k (
l51,2

e2

4m2E d3r
ucn8

†
~x!@¹•el~k!eik•r1eik•r¹•el~k!#cn8~x!u2

En2En82k
, ~7!

FIG. 1. Feynman contour forv integration ~one-loop self-
energy!. Lines directly below and above the real axis denote branch
cuts from the photon and electron propagators. Crosses denote poles
originating from the discrete spectrum of the electron propagator.

FIG. 2. Mohr’s contour for evaluating the one-loop self-energy
contribution to the Lamb shift.
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where

(
l51,2

el
i ~k!el

j ~k!5d i j 2
kikj

k2
. ~8!

K in Eq. ~7! is an appropriate energy cutoff to make the
expression finite„for a derivation of Eq.~7! cf. Ref. @13#,
Eqs.~7-112!–~7-115!, ibid., where in the relativistic case one
has to substitutea for 1/i¹…. In Mohr’s method,K corre-
sponds toEn . Bethe’s derivation of the Lamb shift, which
gave the right scaling of the effect of the self-energy and
correctly identifiedA4,1, but did not include the contribution
to the Lamb shift of ordera/p(Za)4 due to the anomalous
magnetic moment, comprised the expression given in Eq.
~7!, but with a major modification. Bethe subtracted from Eq.
~7! the contribution that would modify the energy~or mass!
of a free electron due to its self-interaction. This contribution
would make a contribution to the rest mass of any electron,
and thus would be unobservable. In our terminology, Bethe’s
nonrelativistic~NR! expression would be written

dEL
2,NR

52P
2a

3pE0

K5m

dk k̂ fu
pi

mF 1

HS2~Ef2k!
2

1

kGpi

m
uf&,

~9!

whereHS is the Schro¨dinger Hamiltonian,f is the nonrela-
tivistic wave function, and the subtracted term21/k in the
integrand corresponds to the portion of mass renormalization
attributable to the low-energy part. By taking the principal
value (P), we identify the real part of Eq.~9! as the energy
shift, whereas the imaginary part corresponds to the decay
width of the stateuf&. Using the subtraction, Bethe disposed
of the spurious lower-order terms and obtained a finite ex-
pression.

In Pachucki’s method~see Fig. 3!, an expression similar
to Eq. ~7! is obtained in the nonrelativistic limit for the low-
energy part, but with an upper cutoff epsilon for the photon
energy. This cutoff epsilon separates the low- and the high-
energy parts. In the dipole approximation exp(ik•r )→1, one
obtains the expression

dEL52
2a

3pE0

e

dk k̂ fu
pi

m

1

HS2~Ef2k!

pi

m
uf& ~10!

for the low-energy part in leading order. The renormalization
term 21/k is gone, and the upper cutoff has been changed
from K5m to K5e. The justification for leaving out the
renormalization term is intimately linked to the special series
expansion prescription used by Pachucki.

Pachucki’s method relies on the fact that the low- and
high-energy parts may formally be regarded as functions of
the fine-structure constanta and the cutoff parametere.
Their sum, however, the self-energy of the electrondE,

dE~a!5EL~a,e!1EH~a,e!, ~11!

does not depend one, provided the high- and low-energy
parts are expanded first ina, and then ine ~the order of
expansion plays a crucial role in that case!.

Another important point in Pachucki’s method is that the
spurious lower-order terms which were present in Mohr’s
calculation vanish in the limite→0, so we do not need to
take them into account. For example, in Mohr’s calculation,
the first spurious term (a/p)En originated from a trivial in-
tegration*0

Endka/p5(a/p)En . In Pachucki’s method, we
would change the upper limit of integration toe and calcu-
late lime→0*0

edka/p50. That means by choosing thee pre-
scription, we not only make the expression for the low-
energy part separately finite, but also dispose of the spurious
lower-order terms. That is the principal reason why Pachu-
cki’s method is well suited for an analytic calculation of
higher-order corrections to the one-loop self-energy.

The choice ofe remains arbitrary to a certain extent~it
has to be because we analytically expand ine, and thus re-
quire arbitrariness!. However, we must put some restraints
on the magnitude ofe. In the high-energy part, we expand
the propagator of the bound electron in powers of the bind-
ing field V. We initially assume a fixed value fore which
prevents infrared problems, but since eventuallye→0, this
expansion is regarded as a formal expansion that is not nec-
essarily convergent. However,e may not be arbitrarily large.
If we let e.2m, we enclose poles not only from the photon
propagator, but also from the negative spectrum of the Dirac-
Coulomb propagator, which would significantly alter our ex-
pression for the low-energy part. It is also required that in the
entire domain of the low-energy part, an expansion of the
expression

exp~ ik•r !

in the matrix element

^cua ieik•r
1

HD2En2k2 id
a je2 ik•ruc&

in powers ofk•r corresponds to an expansion in powers of
Za @this requirement justifies the so-called dipole approxi-
mation, in which we replace exp(ik•r ) by unity to obtain the
lowest-order contribution to the self-energy#. The order of
magnitude ofr is 1/(Za) in natural units. Thus we require
e,(Za). The dominant contribution is then determined by
the region in which the photon energyk[v5O„(Za)2

…, so
that k•r5O(Za). In this paper we consider the relativistic
corrections up to relative order (Za)2. This corresponds to

FIG. 3. Thev-integration contour used by Pachucki and in the
calculation presented in this paper. For the divergent terms in the
high-energy part, we use the Wick-rotated contour given by the
lines extending toe6 i`. For the naively convergent terms, we use
the original contourCH which extends to1`6 id.
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expanding exp(ik•r ) up to (k•r )2. Our restrictions on the
magnitude ofe do not compromise the validity of analytic
expansion in the parametere.

III. HIGH-ENERGY PART

The high-energy part of the radiative correction is given
by

EH52 ie2mE
CH

dv

2pE d3k

~2p!3F 1

k2
2

1

k22M2G
3^ c̄ ugm

1

p” 2k”212g0V
gmuc&2^ c̄ udm~M !uc&,

~12!

where we have used the Feynman gauge for the photon
propagator@Dmn(k)52gmn /k2# and the Pauli-Villars regu-
larization prescription

1

k21 id
→

1

k21 id
2

1

k22M21 id
. ~13!

Note that we may leave out thei e prescription when inte-
grating alongCH , since we take the difference of the inte-
grand infinitesimally above and below the real axis onCH .
Along the positive real axis, the integrand has branch cuts
due to the photon and electron propagators as depicted in
Fig. 1. The expression given in Eq.~12! for EH is infrared
divergent. In the evaluation, we start by calculating the ma-
trix element

P̃5^ c̄ ugm
1

p” 2k”2m2g0V
gmuc& ~14!

up to the order of (Za)6. As outlined in Ref.@1#, this can be
achieved by first expanding the electron propagator in pow-
ers of the binding Coulomb fieldV. This leads to three-
vertex, double-vertex, single-vertex, and zero-vertex parts.
The expansion can be diagrammatically represented as in
Fig. 4. The resulting expressions are subsequently expanded
in powers of the spatial electron momentapi . This procedure
is feasible forP states because, up to order (Za)6, all of the
resulting matrix elements converge. After performing the al-
gebra of the Dirac matrices, the resulting matrix elements on
the P state are evaluated by symbolic procedures written in
the computer algebra systemMATHEMATICA @14#. For the
evaluation, we first expand the wave function~given by the

exact solution to the Dirac-Coulomb equation! in powers of
(Za), then we apply operators in coordinate space represen-
tation, and finally integrate the resulting expressions with the
help of a set of rules that apply to standard integrals. The
integrands which are to be evaluated for the matrix elements
have lengths of up to 2000 terms.

We use a parametric representation of the mass counter
term to allow for local cancellation of the divergences. It can
be shown that

dm~M !52 ie2mE
CH

dv

2pE d3k

~2p!3

3F 1

v22k2
2

1

v22k22M2G 2~v11!

v22k222v

~15!

is a suitable parametric representation of the mass counter
term along the contourCH . The portion of mass renormal-
ization along the contourCL vanishes in the limite→0, and
we have

dm~M !52 ie2mE
CF

dv

2pE d3k

~2p!3

3F 1

k21 i e
2

1

k22M21 i e
G 2~v11!

v22k222v

5a
3m

4p
ln~M2!1 1

2 ]. ~16!

Therefore, by~locally! subtracting the expression

dml5
2~v11!

v22k222v
^c̄ uc&

before the finaldv d3k@1/(v22k2)21/(v22k22M2)# in-
tegration in Eq.~12!, we can subtract the divergences asso-
ciated with mass renormalization.

Note thatdml contains the matrix element^ c̄ uc&, which
is state dependent. Using the virial theorem for the Dirac-
Coulomb equation (̂a•p&52^V&), we have^ c̄ uc&5Ec ,
whereEc is the dimensionless Dirac energy of the statec.

We give here the result for the renormalized matrix ele-
ment

P̃ren5 P̃2dml ~17!

up to (Za)6 in terms ofk and v. We have, for the 3P1/2
state,

FIG. 4. Expansion of the bound electron self-energy in powers
of the binding field.

1742 56U. D. JENTSCHURA, G. SOFF, AND P. J. MOHR



P̃ren~3P1/2!5~Za!2@28k214k416k2v23k4v112v2210k2v226v316k2v316v423v5#/@27~k212v2v2!3#

1~Za!4@2128k4148k6124k8196k4v12k6v29k8v1256k2v22156k4v2290k6v22168k2v3146k4v3

136k6v3216v41240k2v41126k4v4172v5298k2v5254k4v52132v6278k2v6150v7136k2v7118v8

29v9#/@324~k212v2v2!5#1~Za!6@21 044 992k61516 224k81319 032k10132 340k121587 776k4v

11 716 736k6v126 320k8v265 310k10v28085k12v2358 400k2v214 218 368k4v223 461 600k6v2

21 372 476k8v22177 870k10v211 469 440k2v329 185 344k4v311 027 600k6v31357 630k8v3

148 510k10v311 075 200v429 354 240k2v4110 195 136k4v412 348 976k6v41404 250k8v4

23 978 240v5115 638 560k2v523 365 600k4v52777 420k6v52121 275k8v517 869 120v6

212 272 960k2v622 002 392k4v62485 100k6v628 571 360v713 543 120k2v71839 580k4v7

1161 700k6v715 023 200v81852 600k2v81323 400k4v821 231 440v92450 870k2v92121 275k4v9

2145 740v102113 190k2v10196 390v11148 510k2v11116 170v1228085v13#/@612 360~k212v2v2!7#;

~18!

for the 3P3/2 state,

P̃ren~3P3/2!5~Za!2@28k214k416k2v23k4v112v2210k2v226v316k2v316v423v5#/@27~k212v2v2!3#

1~Za!4@2128k4132k618k8132k4v226k6v23k8v1192k2v2268k4v2230k6v2256k2v3142k4v3

112k6v32112v4142k4v4124v526k2v5218k4v5136v6226k2v6210v7112k2v716v8

23v9#/@324~k212v2v2!5#1~Za!6@24 179 968k61516 608k81224 616k10112 180k1212 351 104k4v

1243 712k6v21 022 336k8v2103 110k10v23045k12v21 433 600k2v218 960 000k4v21667 456k6v2

2539 868k8v2266 990k10v214 157 440k2v322 845 696k4v311 703 632k6v31370 230k8v3

118 270k10v314 300 800v4217 297 280k2v423 980 704k4v41135 408k6v41152 250k8v4

210 752 000v5110 612 000k2v52619 136k4v52449 820k6v5245 675k8v5115 408 960v6299 680k2v6

1586 824k4v62182 700k6v6210 647 840v71216 720k2v71159 180k4v7160 900k6v712 896 320v8

2543 480k2v81121 800k4v82278 880v9165 730k2v9245 675k4v91136 500v10242 630k2v10

242 210v11118 270k2v1116090v1223045v13#/@2 449 440~k212v2v2!7#; ~19!

for the 4P1/2 state,

P̃ren~4P1/2!5~Za!2@28k214k416k2v23k4v112v2210k2v226v316k2v316v423v5#/@48~k212v2v2!3#

1~Za!4@22944k411072k61520k812080k4v210k6v2195k8v15760k2v223412k4v221950k6v2

23640k2v311050k4v31780k6v32560v415040k2v412730k4v411560v522070k2v521170k4v5

22700v621690k2v611030v71780k2v71390v82195v9#/@15 360~k212v2v2!5#1~Za!6

3@241 518 080k6120 285 056k8112 019 560k1011 140 300k12121 790 720k4v167 517 184k6v

21 295 056k8v22 875 250k10v2285 075k12v213 189 120k2v21164 921 344k4v22138 538 016k6v2

250 829 380k8v226 271 650k10v2153 975 040k2v32357 889 728k4v3150 610 672k6v3114 327 250k8v3

11 710 450k10v3139 567 360v42357 683 200k2v41404 953 920k4v4181 291 280k6v4114 253 750k8v4

2147 302 400v51601 024 480k2v52153 435 296k4v5228 556 500k6v524 276 125k8v51294 387 520v6

2485 016 000k2v6259 093 160k4v6217 104 500k6v62325 403 680v71160 218 800k2v7

128 458 500k4v715 701 500k6v71198 315 040v8117 532 200k2v8111 403 000k4v8256 099 120v9

56 1743LAMB SHIFT OF 3P AND 4P STATES AND THE . . .



214 180 250k2v924 276 125k4v92920 500v1023 991 050k2v1012 826 250v1111 710 450k2v11

1570 150v122285 075v13#/@51 609 600~k212v2v2!7#; ~20!

and, for the 4P3/2 state,

P̃ren~4P3/2!5~Za!2@28k214k416k2v23k4v112v2210k2v226v316k2v316v423v5#/@48~k212v2v2!3#

1~Za!4@22944k41752k61200k81800k4v2570k6v275k8v14480k2v221652k4v22750k6v2

21400k2v31970k4v31300k6v322480v41240k2v411050k4v41600v52230k2v52450k4v51660v6

2650k2v62170v71300k2v71150v8275v9#/@15 360~k212v2v2!5#1~Za!6@241 518 080k6

15 273 472k812 372 328k101132 300k12121 790 720k4v13 438 848k6v210 087 504k8v21 069 810k10v

233 075k12v213 189 120k2v2188 747 008k4v214 454 624k6v225 916 484k8v22727 650k10v2

137 847 040k2v3229 007 552k4v3118 082 288k6v313 870 930k8v31198 450k10v3139 567 360v4

2163 681 280k2v4234 772 416k4v412 115 344k6v411 653 750k8v4298 918 400v51100 285 920k2v5

28 639 904k4v524 785 620k6v52496 125k8v51143 286 080v621 740 480k2v615 429 592k4v6

21 984 500k6v6299 145 760v713 382 960k2v711 829 380k4v71661 500k6v7126 784 800v8

25 400 920k2v811 323 000k4v822 737 840v91563 430k2v92496 125k4v911 400 140v10

2463 050k2v102408 310v111198 450k2v11166 150v12233 075v13#/@51 609 600~k212v2v2!7#. ~21!

Having calculatedP̃, we finally integrate alongCH to obtain
the result forEH ,

EH52 ie2mE
CH

dv

2pE d3k

~2p!3F 1

v22k2
2

1

v22k22M2G P̃ren.

~22!

Note that asP̃ren5 P̃2dml , both P̃ as well as the local mass
renormalization termdml are properly integrated with the
regularized photon propagator.

The final integrations with respect to the photon momenta
are done in a different way for the terms inP̃ren, which
require regularization and those which do not. The terms
which require regularization are integrated covariantly by
Feynman parameter techniques and a subsequent Wick rota-
tion. These terms are not integrated alongCH , but rather
along CH8 . They are not infrared divergent, so we may put
e50 for these terms. Those terms which do not require regu-
larization are integrated in an essentially noncovariant way.
The d3k integration is carried out first, then we proceed to
the dv integration.

The integration procedure for the terms which require
regularization is as follows. We isolate those terms in
( P̃2dml) which would be ultraviolet divergent if integrated
with the unregularized photon propagator. We denote these
terms byP̃ren

div . We then evaluate

dEdiv5E
CH

dv

2pE d3k

~2p!3

1

v22k2
@ P̃ren

div#.

All terms in P̃ren
div require regularization.

By simple power-counting arguments, it can be shown
that P̃ren

div is exactly the sum of those terms of orderkn where

n>22 for largek. Therefore, the terms contributing toP̃ren
div

can easily be isolated. The terms inP̃div , can obviously be
written as the sum of terms of the form

P̃div5(
i

pi~ uku,v!

@k212v2v2#ni
, ~23!

wherepi is a polynomial inuku andv and deg(pi)>ni22.
The entirely covariant integration procedure for the divergent
terms will be outlined here. The terms in Eq.~23! need to be
multiplied by the factors 1/(v22k2) and 1/(v22k22M2)
from the regularized photon propagator. We use Feynman
parameters in the form

1

ABn
5E

0

1

dx
nxn21

@A~12x!1Bx#n11
~24!

to join the denominators. IdentifyingA152v21k2,
A252v21k21M2, andB5k212v2v2, we have for the
contribution from the unrenormalized photon propagator
1/(v22k2),

A1~12x!1Bx52 k̃21D1 , ~25!

where

k̃5~ṽ,k!5~v2x,k!, D15x2 ~26!

and for the contribution from the renormalization part of the
photon propagator
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A~12x!1Bx52 k̃21D2 , ~27!

where

D25x21M ~12x!. ~28!

The energy shift due to the divergent terms is then propor-
tional to

(
i
E

0

1

dxE dṽ d3k
nix

ni21pi~ uku,ṽ !

2 k̃21D
,

whereD represents either of the termsD1 or D2 and it is
understood that the contribution from these two terms must
be subtracted to obtain the final result. Performing the Wick
rotation

ṽ→ iv,

we have

2 k̃25v21k25ke
21D,

whereke is the Euclidean 4-vectorke5(v,k). We then ob-
tain the energy shift due to the divergent terms proportional
to

(
i
E

0

1

dxE d4ke

nix
ni21pi~ uku,v!

ke
21D

.

The ~straightforward! angular part of these integrals can
be done by parametrizing the Euclidean 4-space as
v5kecosg, k15kesing sinu cosf, k25kesing sinu sinf, and
k35kesing cosu. We then havev5kecosg, uku5kesing. For
the average over the four-dimensional angle, we utilize the
formulas

E dVe
~4!

2p2
cos2g5

1

4
, E dVe

~4!

2p2
cos4g5

1

8
,

E dVe
~4!

2p2
cos6g5

5

64
.

The remaining radial part of the integrals can be evaluated
with the help of the formulas

E
0

`

dke ke
3 1

~ke
21D !b

5
1

2Db22~b21!~b22!
; ~b.2!

and

E
0

L

dke ke
3 1

~ke
21D !2

5
1

2
lnS L

D D1OS 1

L D 2

.

It is easy to prove that the dependence on the temporary
upper cutoffL disappears when the contribution due to the
unregularized and the regularization part of the photon
propagator are subtracted (D1 andD2).

As the final step, we integrate over the parameterx intro-
duced in Eq.~24!, and subsequently investigate the resulting
expression in the limitM→`. The respective expressions
vanish asM→` for all states considered in this paper. This
fact is intimately linked to our using the entirely covariant
Feynman parameter approach for the integration of the diver-
gent terms. If we had used a noncovariant scheme of inte-
gration, as in Ref.@7#, then we would have had to take into
account finite correction terms to obtain the correct result for
the Lamb shift. Note that the~divergent! spurious terms of
order (Za)2, which are present in all of the matrix elements
P̃ren, vanish after we have performed thed4k integration in
the way outlined above, which includes final expansion in
the e parameter.

The terms inP̃ren
fin which are finite when integrated with

the unrenormalized photon propagator do not need regular-
ization. It is easy to see thatP̃ren

fin can be written as the sum of
terms of the form

P̃ren
fin 5(

j

qj~ uku,v!

@k212v2v2#nj
, ~29!

whereqj is a polynomial inuku andv whose degree is less
than 2nj22 to insure ultraviolet convergence. For the 4P1/2

state, e.g.,P̃ren
fin is given by

Pren
fin 5~Za!2@24k213k2v16v223v3#/@24~k212v2v2!3#1~Za!4@21472k41536k611040k4v25k6v12880k2v2

21706k4v221820k2v31525k4v32280v412520k2v41780v521035k2v521350v61515v7#/@7680~k212v

2v2!5#1~Za!6@220 759 040k6110 142 528k816 009 780k10110 895 360k4v133 758 592k6v2647 528k8v

21 437 625k10v26 594 560k2v2182 460 672k4v2269 269 008k6v2225 414 690k8v2126 987 520k2v3

2178 944 864k4v3125 305 336k6v317 163 625k8v3119 783 680v42178 841 600k2v41202 476 960k4v4

140 645 640k6v4273 651 200v51300 512 240k2v5276 717 648k4v5214 278 250k6v51147 193 760v6

2242 508 000k2v6229 546 580k4v62162 701 840v7180 109 400k2v7114 229 250k4v7199 157 520v8

18 766 100k2v8228 049 560v927 090 125k2v92460 250v1011 413 125v11#/@25 804 800~k212v2v2!7#.

~30!
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We have to calculate

dEH52 ie2mE
CH

dv

2pE d3k

~2p!3

1

v22k2
@ P̃ren

fin #.

The quantityFH defined by

EH5
a

p
m

~Za!4

n3
FH ~31!

in Eq. ~2! may be expressed as

FH5@n3/~Za!4#E
CH

dvF~v!, ~32!

where

F~v!5
1

2p i E duku
k2

v22k2
P̃ren

fin ~v,uku!.

One can dispose of the factorsk2 in the numerator of the
integrand using the following procedure. First writek2 as

k25Y22v1v2,

so Y5k212v2v2 corresponds to the denominator in Eq.
~29!. The resulting expression is subsequently expanded. The
powers ofY cancel, and the result does not carry powers of
k in the numerator.

The integrand inF(v) can be written as the sum of terms
of the form

F~v!5
1

2p i E dukuS (
j

aj

vnj

v22k2

1

~k212v2v2!mj
D ,

~33!

with suitable coefficientsaj . The duku integration can then
be carried out using the formula

1

2p i E2`

`

duku
1

v22k2

1

k21V

5
21

2 sgn„Im~v!…~v21V!v
1

~21!n21

~n21!!

]n21

]Vn21

3F i

2AV

1

v21V
G , ~34!

where sgn is the sign function defined as

sgn~x!5H 1 x>0

21 x,0.
~35!

We identify

V52v2v2 ~36!

in order to carry out the integration in Eq.~33!. The formula
Eq. ~34! deserves some comments. We are integrating along
the real axis. Becausev and V both have an infinitesimal

imaginary part all along the contour of integrationCH , the
positions of the poles of the integrand are well defined.

The branch cuts of the functionF(v) can be readily iden-
tified. Due to the term sgn„Im(v)…v in the first term on the
right-hand side in Eq.~34!, there is a branch cut along the
positive real axis. This branch cut is caused by the photon
propagator. Due to the termAV in the second term on the
right-hand side in Eq.~34!, there is also a branch cut along
the line where the expressionV52v2v2 assumes negative
real values. This branch cut extends fromv52 along the
positive real axis tov5`. It is caused by the Dirac-
Coulomb propagator~see Fig. 1!.

It can be explicitly checked that the functionF(v) satis-
fies the equation

F~v* !52F~v!* . ~37!

We can divide the contourCH in an upper contourCH
u which

extends frome1 i01 to `1 i01, and a lower contourCH
l

which extends from̀ 2 i01 to e2 i01. We then have, due
to Eq. ~37!,

E
CH

dv F~v!5E
CH

l
dv F~v!1E

CH
u
dv F~v!

5E
e

`

dv F~v1 i01!1 È e

dv F~v2 i01!

5E
e

`

dv F~v1 i01!1E
e

`

dv F~v1 i01!*

5E
CH

u
dv F~v!1c.c. ~38!

We restrict ourselves therefore to the upper contourCH
u , and

understand that the complete result is the sum of the integral
along the upper contour plus its complex conjugate.

We then perform a change of variable to proceed to the
final dv integration. Defining

u5
AV1 iv

AV2 iv
~39!

and

U~u!5
dv

du
F~v!, ~40!

we have

FH5n3/~Za!4E
u~CH!

du U~u!. ~41!

Note that

u5
ARe~2v2v2!1 iv

ARe~2v2v2!2 iv
for vPCH

U ,Re~v!P@e,2),

~42!

whereas
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u5
ARe~v222v!2v

ARe~v222v!1v
for vPCH

U ,Re~v!P@2,̀ !,

~43!

where the argument of the square root is written in such a
way as to represent a positive real quantity in the two above
equations. Sou(v50)51, u(v52)521, u(`1 i01)50,
and uP@21,0) for vPCH

U ,Re(v)P@2,̀ ). So for vPCH
U ,

Re(v)P@e,2), u has a nonvanishing imaginary part,
whereas forvPCH

U , Re(v)P@2,̀ ), u is a real quantity. The
mappingv→u is one on one forvPCH

U .
Note that if we had chosen the lower contourCH

L , then
u(`2 i01)52`. In that case, the above substitution would
not have had the desired propertyu→0 for v→`.

On CH
U , v and AV can be expressed as functions ofu

according to

v52
1

2

12u2

u
,

AV52
i

2

~12u!~11u!

~2u!
,

i.e., AV extends along the negative imaginary axis for
Re(v).2, uP@21,0#. The result forU(u) (4P1/2 state! is

U~u!5~Za!2F2
1

192
2

1

96~211u!2G1~Za!4F2
47

20 480
1

23

10 240~211u!4 1
23

10 240~211u!3 1
79

40 960~211u!2

1
13

2048~11u!4 2
13

2048~11u!3 1
113

24 576~11u!2G1~Za!6F2
141 737

41 287 680
2

39 173

20 643 840~211u!6

2
39 173

10 321 920~211u!5 2
2 228 617

206 438 400~211u!4 2
3 485 527

206 438 400~211u!3 2
4 685 519

330 301 440~211u!2

2
499

46 080~211u!
2

343u

614 400
1

1267

65 536~11u!8 2
3801

65 536~11u!7 1
11 765

131 072~11u!6 2
2715

32 768~11u!5

1
69 651

1 310 720~11u!4 2
28 021

1 310 720~11u!3 1
89 779

15 728 640~11u!2G . ~44!

The next step in the calculation is theu integration,

FH5@n3/~Za!4#E
u~e1 i01!

0

du U~u!1c.c., ~45!

where

u~e1 i01!511 iA2e2e2
i e3/2

2A2
1O~e!5/2. ~46!

It is useful to define

ẽ 512u~e1 i01!52 iA2e1e1
i e3/2

2A2
1O~e!5/2. ~47!

Note that thee prescription calls for carrying out theu inte-
gration from u(e1 i01) to 0, and subsequently expanding
the result in powers ofe up toe0. For those terms which are
finite when integrated from 1 to 0 we may carry out this
integration without regarding the dependence one. For in-
stance,

E
u~e1 i01!

0

du
1

~11u!n
5

12212n

n21
1O~Ae!, ~48!

so, in the limite→0, thee-dependent term vanishes. Terms
of the form 1/(12u)n, however, introduce a divergence in
1/ẽ . We have

E
u~e1 i01!

0

du
1

~12u!n
5

ẽ 12n21

n21
. ~49!

We then add to the result of this integration the complex
conjugate, and subsequently expand in powers ofe. This
procedure is illustrated with some examples. For the terms
proportional to 1/(12u)2, we have

E
u~e1 i01!

0

du
1

~12u!2
512

1

ẽ
, ~50!

so

E
u~e1 i01!

0

du
1

~12u!2
1c.c.

522
1

ẽ
2

1

ẽ *
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522
1

2 iA2e1e1O~e!3/2
2

1

iA2e1eO~e!3/2

522S i

A2e
1

1

2
1O~e!1/2D 2S 2

i

A2e
1

1

2
1O~e!1/2D

52211O~e!1/2511O~e!1/2. ~51!

For terms proportional to 1/(12u), we have

E
u~e1 i01!

0

du
1

~12u!
5 ln~ ẽ !, ~52!

so

E
u~e1 i01!

0

du
1

12u
1c.c.

5 ln~ ẽ !1 ln~ ẽ * !

5 ln@2 iA2e1O~e!#1 ln@ iA2e1O~e!#

52 i
p

2
1 i

p

2
12ln~A2e!1O~e!1/2

5 ln21 lne1O~e!1/2. ~53!

Note that for constant terms, this results in

E
u~e1 i01!

0

du3const1c.c.5223const1O~e!1/2. ~54!

Using the results Eqs.~51! and ~54!, it is easy to show that
the spurious terms of order (Za)2 in expression~44! vanish
after the finalu integration.

The final result for the high-energy part (4P1/2 state! is

FH~4P1/2!52
1

6
1~Za!2F24 409

86 400
2

499

720
~ ln21 lne!2

23

90eG .
~55!

Here we give the complete results for the high-energy parts
of the other states treated in this paper:

FH~3P1/2!52
1

6
1~Za!2F 6191

24 300
2

268

405
~ ln21 lne!2

20

81eG ,
~56!

FH~3P3/2!5
1

12
1~Za!2F 67 903

194 400
2

148

405
~ ln21 lne!2

20

81eG ,
~57!

FH~4P3/2!5
1

12
1~Za!2F31 399

86 400
2

137

360
~ ln21 lne!2

23

90eG .
~58!

IV. LOW-ENERGY PART

The low-energy part of the energy shift originates from
low-energy virtual photons. The energy of the photons is
comparable in magnitude to the binding energy of the elec-
tron @order (Za)2#. Therefore it is impossible to expand the

electron propagator in powers of the binding field. We have
to treat the binding field nonperturbatively. An expansion in
powers of (Za) is accomplished by considering the spatial
momenta of the virtual photon and the electron momenta as
expansion parameters.

Choosing the Coulomb gauge for the photon propagator,
one finds that only the spatial elements of this propagator
contribute@1#. Thev integration alongCL is performed first,
which leads to the following expression forEL :

EL52e2PE
uku,e

d3k

~2p!32uku
dT,i j

3^cua ieik•r
1

HD2~Ec2v!
a je2 ik•ruc&

~v[uku!. ~59!

HD denotes the Dirac-Coulomb HamiltonianHD5a•p
1bm1V, dT is the transverse delta function, anda i refers
to the Diraca matrices. The principal value of the above
integral is the real quantity corresponding to the energy shift
in one-loop order. The imaginary part of theCL integration,
which leads to the decay width of the state, has been dropped
in Eq. ~59!. In the matrix element

Pi j 5^cua ieik•r
1

HD2~Ec2v!
a je2 ik•ruc&, ~60!

we introduce a unitary Foldy-Wouthuysen transformation
U,

Pi j 5^Ucu~Ua ieik•rU1!
1

U@HD2~Ec2v!#U1

3~Ua je2 ik•rU1!uUc&. ~61!

The lower components of the Foldy-Wouthuysen trans-
formed Dirac wave functionc vanish up to (Za)2, so that
we may approximateuUc& by

uUc&5uf&1udf& with ^fudf&50, ~62!

where uf& is the nonrelativistic~Schrödinger-Pauli! wave
function, andudf& is the relativistic correction.

We define an operator acting on the spinors as even if it
does not mix upper and lower components of spinors, and we
call the odd operator odd if it mixes upper and lower com-
ponents. The Foldy-Wouthuysen~FW! Hamiltonian consists
of even operators only. For the upper left 232 submatrix of
this Hamiltonian, we find the result@13#

HFW5U@HD2~Ec2v!#U15m1HS1dH, ~63!

whereHS refers to the Schro¨dinger Hamiltonian, anddH is
the relativistic correction,

dH52
~p!4

8m3
1

p~Za!

2m2
d~r !1

~Za!

4m2r 3
s•L . ~64!

It is interesting to note the reason why we can ignore the
lower 232 submatrix of the FW Hamiltonian in our scheme

1748 56U. D. JENTSCHURA, G. SOFF, AND P. J. MOHR



of calculation. The lower 232 submatrix contains the terms
2m2(Ec2v)'22m as the dominating (Za)0 contribu-
tion. Therefore the integral vanishes in the limite→0. This
can be checked by considering the integral in Eq.~59!, in-
serting a spectral resolution for the Dirac-Coulomb propaga-
tor, and performing the integral overd3k after suitable angu-
lar averaging. The upper 232 submatrix has no (Za)0

contribution, because terms proportional tom andEc cancel.
This submatrix contributes to the Lamb shift. Now we turn to
the calculation of the Foldy-Wouthuysen transform of the
operatorsa iexp(k•r ). The expressionUa iexp(ik•r )U1 is to
be calculated. Assuming thatv5uku is of the order
O„(Za)2

…, we may expand the expressionUa ieik•rU1 in
powers of (Za). The result of the calculation is

Ua ieik•rU15a i@11 i ~k•r !2 1
2 ~k•r !2#2

1

2m2
pi~a•p!

1g0
pi

m@11 i ~k•r !2 1
2 ~k•r !2#2g0

1

2m3
pip2

2
1

2m2

a

r 3
~r3S ! i1

1

2m
g0~k•r !~k3S ! i

2
i

2m
g0~k3S ! i . ~65!

In the limit e→0 the odd operators in the above expression
do not contribute to the self-energy in (Za)2 relative order,
because, up to (Za)2 relative order, these operators only join
the upper components of the wave function with the lower
components of the Dirac-Coulomb Hamiltonian. This contri-
bution vanishes, as described. So one can neglect the odd
operators. By using symmetry arguments, it can be shown
easily that the last term in the above expression~proportional
to k3S) also does not contribute to the Lamb shift in
(Za)2 relative order fore→0.

Because we can ignore odd operators, and because the
lower components of the Foldy-Wouthuysen transformed
wave function vanish, we keep only the upper left 232 sub-
matrix of Eq.~65!, and we writeUa ieik•rU1 as

Ua ieik•rU1.
pi

m@11 i ~k•r !2 1
2 ~k•r !2#2

1

2m3
pip2

2
1

2m2

a

r 3
~r3s ! i1

1

2m
~k•r !~k3s ! i .

~66!

This can be rewritten as

Ua ieik•rU15
pi

m
eik•r1dyi , ~67!

wheredyi is of order (Za)3. It is understood that the term
(pi /m)eik•r is also expanded up to the order (Za)3. Denot-
ing the Schro¨dinger energy byE @E52(Za)2m/n2 for nP
states# and the first relativistic correction toE by dE, we can
thus write the matrix elementPi j as

Pi j 5^f1dfuFpi

m
eik•r1dyi G

3
1

HS2~E2v!1dH2dEFpj

m
e2 ik•r1dyj G uf1df&.

~68!

We now define the dimensionless quantity

P5
m

2
dT,i j Pi j . ~69!

Up to (Za)2, we can write the matrix elementP as the sum
of the contributions@Eqs. ~70!–~75!#. The leading contribu-
tion ~the ‘‘nonrelativistic dipole’’! is given by

Pnd5
1

3m
^fupi

1

HS2~E2v!
pi uf&. ~70!

The other contributions toP are @1# as follows:
~i! the nonrelativistic quadrupole,

Pnq5
1

3m
^fupieik•r

1

HS2~E2v!
pie2 ik•ruf&2Pnd;

~71!

~ii ! the corrections to the currenta i from the Foldy-
Wouthuysen transformation,

Pdy5dT,i j ^fudyi
1

HS2~E2v!
pje2 ik•ruf&; ~72!

~iii ! the contribution due to the relativistic Hamiltonian,

PdH52
1

3m
^fupi

1

HS2~E2v!
dH

1

HS2~E2v!
pi uf&;

~73!

~iv! the contribution due to the relativistic correction to
the energy,

PdE5
1

3m
^fupi

1

HS2~E2v!
dE

1

HS2~E2v!
pi uf&;

~74!

and
~v! the contribution due to the relativistic correction to the

wave function,

Pdf5
2

3m
^dfupi

1

HS2~E2v!
pi uf&. ~75!

Almost all of the above contributions are calculated using a
coordinate space representation of the Schro¨dinger Coulomb
propagator given in Refs.@1# and @15#. Formulas given in
Refs.@17# and@16# prove useful for the summation over the
intermediate quantum numbers. For the nonrelativistic quad-
rupole contribution, however, we use the momentum-space
representation due to Schwinger@19#,
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G~p,p8,V!54pmX3S ieipt

2sinpt D E
1

01

dr r2t
d

dr

12r2

r

1

@X2~p2p8!21~p21X2!~p821X2!~12r!2/~4r!#2
, ~76!

whereX5A22mV, t5ma/X. For nonintegert, one may
replace the complex integration around the origin~in the
positive sense! by a much simpler integral:

S ieipt

2sinpt D E
1

01

dr r2tg~r!→E
0

1

dr r2tg~r!. ~77!

We then perform the calculation ofPNQ in momentum space
using formulas given in the paper by Gavrila and Costescu
@18#. The momentum-space wave functions ofP states were
given in Ref.@19#. Calculations forPNQ become increasingly
complex. It should be noted that in the case of the 4P wave
function, one has to deal with intermediate expressions of up
to 20 000 terms. We do not describe these calculations in any

further detail. Evaluations for this part of the calculation
were done onIBM RISC/6000 and SGI POWER ONYX systems
with the help of the computer algebra systemMATHEMATICA

@14#.
The finalv integration is done by a change of variable

v→t where t5
1

A11~2n2v!/@~Za!2m#
~78!

(t50 corresponds tov5`, andt51 corresponds tov50).
As an example for aP matrix element, we give here the
result for a contribution toPdH(4P1/2), caused by the
Russell-Saunders coupling term in the Foldy-Wouthuysen
transformed Dirac Hamiltonian:

PL•S~4P1/2!5^fupi
1

HS2~Ef2v!F a

4m2r 3
s•L G 1

HS2~Ef2v!
pi uf&

5~Za!2@16 384F366~ t !t6~2112t !~112t !~2114t !~114t !~2519t2!2#/@~675~211t !2~11t !14#1~Za!2

3@8192F23~ t !t6~2112t !~112t !~2114t !~114t !~2519t2!2#/@675~211t !2~11t !14#

2~Za!2@16 384C63~ t !t6~2112t !~112t !~2114t !~114t !~2519t2!2#/@675~211t !2~11t !14#

2~Za!2@16F4~ t !t5~2519t2!~519t2!#/@45~211t !5~11t !5#2~Za!2@4096gt7~112t !~114t !

3~2519t2!2~263012988t222 677t21322 539t321 308 681t415 929 071t5220 884 413t6

153 752 275t72124 047 785t81233 683 811t92362 131 987t101489 361 437t112552 966 475t12

1526 774 701t132433 556 447t141298 335 889t152171 601 869t16184 114 837t17233 425 148t18

110 588 500t1922 811 264t201536 448t21264 512t2219216t23)]/ @675~221t !~211t !8~11t !24

3~2312t !~2714t !~2514t !~2314t !] 1~Za!2@ t4~54 385 222 500113 984 771 500t

115 573 367 761 525t21137 704 964 619 600t321 186 676 073 750 825t42891 514 989 328 950t5

218 753 057 125 404 875t61257 731 557 911 828 220t72644 138 132 939 443 685t8

2162 189 845 176 905 698t915 703 957 333 855 251 853t10240 461 889 136 476 779 376t11

1179 879 463 449 806 219 483t122470 465 622 621 377 811 686t131722 355 119 079 050 313 441t14

2285 989 274 333 023 499 852t1522 287 627 466 701 513 790 137t1618 721 622 433 626 707 698 710t17

217 878 002 921 800 012 898 021t18122 584 212 519 300 184 263 992t19

211 732 105 237 171 234 433 515t20222 234 628 025 915 862 014 322t21

173 751 337 137 966 874 205 423t222118 367 926 111 467 660 583 708t23

1122 509 973 591 672 089 703 233t24268 708 753 123 836 196 116 438t25
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227 553 239 135 523 122 581 409t261126 820 257 213 436 783 378 720t27

2189 954 960 243 232 498 928 039t281199 312 481 720 191 257 908 238t29

2164 901 212 087 123 003 552 709t301112 286 946 900 261 699 896 044t31

264 112 830 789 916 243 409 479t32130 834 230 557 497 197 343 734t33

212 455 975 426 801 658 077 884t3414 211 137 005 166 537 183 048t35

21 183 248 309 588 246 704 096t361270 125 031 800 068 986 496t37

248 193 573 673 016 712 704t3816 583 393 931 443 034 112t39

2691 086 520 295 792 640t40141 007 381 492 105 216t4111 314 475 331 420 160t42)]/

@425 250~221t !2~211t !10~11t !24~2312t !2~2112t !~2714t !2~2514t !2~2314t !2~2114t !#

1~Za!2
†8192t8~2112t !~2114t !~2519t2!2~316t13t218t3!ln@2/~11t !#‡/@675~211t !12~11t !6#

1~Za!2$16G4~ t !t5~2519t2!~2112512400t1145 390t2219 200gt22148 320t322 026 412t4

1418 560gt411 027 200t517 316 050t621 920 000gt621 382 400t727 444 143t812 211 840gt8

219 200t2ln@2/~11t !#1418 560t4ln@2/~11t !#21 920 000t6ln@2/~11t !#

12 211 840t8ln@2/~11t !#)%/@10 125~211t !8

3~11t !8] 1~Za!2@256t7~2519t2!2~8145t2305t22175t31283t42265t513421t61395t7

1433t8)ln@~2t !/~11t !#]/ @675~211t !12~11t !7#, ~79!

where

F4~ t !52F1$1,24t,124t,@~ t21!/~ t11!#2%, ~80!

G4~ t !52F1@1,24t,124t,~ t21!/~ t11!#, ~81!

F366~ t !5t2(
k56

`
@~ t21!/~ t11!#k

324t1k

3
]

]b
~2F1!@2k,6,6,2/~11t !#, ~82!

F23~ t !5 (
k56

`
@~ t21!/~ t11!#2k

~324t1k!2
, ~83!

C63~ t !5 (
k56

`
@~ t21!/~ t11!#2k

~324t1k!
C~k16!, ~84!

whereC denotes the logarithmic derivative of theG func-
tion. The quadratic singularity in the result forPL•S(4P1/2)
in Eq. ~79! at t5 3

4 @given by the (2314t)2 term in the
denominator of the purely rational function# corresponds to
the decay into the 3D state. One can check explicitly that the
insertion of corresponding intermediate states in the spectral
decomposition of the propagators necessitates the existence
of quadratic singularities in theP matrix elements, and that
the quadratic singularities occur only in the matrix elements

with two propagators. The quadratic singularities are a con-
sequence of the perturbative treatment ofdH in the propa-
gator 1/@HS1dH2(Ef1dE2v)# @expansion indH is not
allowed in the vicinity of a pole of the resolvent
G(E)51/(HS2E)#. The integration procedure for the qua-
dratic singularities is as follows: first we isolate and calculate
analytically the integral of the term that gives rise to the
singularity~as a function oft), then we take the difference of
the edge terms att51 and 0. This procedure takes back the
effect of the perturbative treatment, and assigns the correct
value to thet integral. As the final step, we subtract the term
that gave rise to the quadratic singularity, and proceed with
the rest of the terms in the usual way described in Ref.@1#.

The integration procedure deserves some further com-
ments. We also encounter in the matrix elements singulari-
ties of linear type att5 1

4,
1
2, and 3

4, which also correspond to
the decay of the excited state. The residue taken at these
singularities yields the decay width of the respective states.
In order to obtain the principal value of thet integral, one
has to symmetrize the integrand around all the singularities.
This is also accomplished by symbolic procedures written in
the computer algebra languageMATHEMATICA.

The results of the calculations have been checked in many
ways. An important cross-check is the cancellation of
e-divergent terms in the sum of the high- and low-energy
parts. By considering the expansion of the propagators in
powers of 1/v, the logarithmic singularities of all contribu-
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tions can be calculated individually, and agree with the re-
sults obtained from complete evaluation.

The contributions to the low-energy partFL in (Za)2

relative order are given in Tables I and II. Summing all con-
tributions, we obtain the following complete results for the
contribution of the low energy partsFL :

FL~3P1/2!52
4

3
lnk0~3P!1~Za!2

3F20.943 78~1!1
20

81e
1

268

405
ln

e

~Za!2G ,

~85!

FL~3P3/2!52
4

3
lnk0~3P!1~Za!2

3F20.693 56~1!1
20

81e
1

148

405
ln

e

~Za!2G ,

~86!

FL~4P1/2!52
4

3
lnk0~4P!1~Za!2

3F20.997 80~1!1
23

90e
1

499

720
ln

e

~Za!2G ,

~87!

and

FL~4P3/2!52
4

3
lnk0~4P!1~Za!2

3F20.730 57~1!1
23

90e
1

137

360
ln

e

~Za!2G .

~88!

V. RESULTS AND EVALUATION OF THE LAMB SHIFT

Summing the contributions from the high- and low-
energy parts, we obtain the following results for the scaledF
function defined in Eq.~2!:

F~3P1/2!52 1
6 2 4

3 lnk0~3P!1~Za!2

3$21.147 68~1!1 268
405ln@~Za!22#%, ~89!

F~3P3/2!5 1
12 2 4

3 lnk0~3P!1~Za!2

3$20.597 56~1!1 148
405ln@~Za!22#%, ~90!

F~4P1/2!52 1
6 2 4

3 lnk0~3P!1~Za!2

3$21.195 68~1!1 499
720ln@~Za!22#%, ~91!

F~4P3/2!5 1
12 2 4

3 lnk0~3P!1~Za!2

3$20.630 94~1!1 137
360ln@~Za!22#%. ~92!

The results obtained forA4,0 andA6,1 are in agreement with
those previously known@3#. The values of the Bethe loga-
rithms @5,6#

TABLE I. Contributions of relative order (Za)2 to the low-energy partFL for the 3P1/2 and 3P3/2 states.

Contribution 3P1/2 3P3/2

Fnq 21.433 010(1)1248/405 ln„e/(Za)2
… 21.433 010(1)1248/405 ln„e/(Za)2

…

Fdy 0.922 653(1)220/81 ln„e/(Za)2
… 0.629 717(1)220/81 ln„e/(Za)2

…

FdH 0.356 318(1)273/324 ln„e/(Za)2
… 0.333 053(1)255/324 ln„e/(Za)2

…

FdE 0.040 651 9(1)11/36 ln„e/(Za)2
… 0.013 551(1)11/108 ln„e/(Za)2

…

Fdf 20.830 340(1)140/81 ln„e/(Za)2
… 20.236 869(1)113/108 ln„e/(Za)2

…

sum 20.94 378(1)1268/405 ln„e/(Za)2
… 20.69 356(1)1148/405 ln„e/(Za)2

…

TABLE II. Contributions of relative order (Za)2 to the low-energy partFL for the 4P1/2 and 4P3/2 states.

Contribution 4P1/2 4P3/2

Fnq 21.512 220(1)1229/360 ln„e/(Za)2
… 21.512 220(1)1229/360 ln„e/(Za)2

…

Fdy 0.966 398(1)223/90 ln„e/(Za)2
… 0.662 154(1)223/90 ln„e/(Za)2

…

FdH 0.364 541(1)22891/11 520 ln„e/(Za)2
… 0.342 940(1)2439/2304 ln„e/(Za)2

…

FdE 0.033 550 4(1)113/768 ln„e/(Za)2
… 0.012 904(1)15/768 ln„e/(Za)2

…

Fdf 20.850 066(1)1787/1440 ln„e/(Za)2
… 20.236 345(1)153/288 ln„e/(Za)2

…

sum 20.997 80(1)1499/720 ln„e/(Za)2
… 20.730 57(1)1137/360 ln„e/(Za)2

…
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lnk0~3P!520.038 190 23~1!,

lnk0~4P!520.041 954 89~1! ~93!

could be verified numerically with a seven-figure accuracy
from our analytic expressions by numerical~Gaussian! inte-
gration. For A6,1, we use the following general formula
which may be extracted from the work by Erickson and Yen-
nie @Ref. @4#, Eq. ~4.4a! ibid., upon subtraction of the
vacuum polarization contribution implicitly contained in the
quoted equation#:

A6,1~n,l , j !

5
4

3H ~12d l ,0!
8$32@ l ~ l 11!#/n2%

~2l 21!~2l !~2l 11!~2l 12!~2l 13!

1d l ,1F12
1

n2G F 1

10
1

1

4
d j ,l 21/2G1d l ,0F2

601

240

2
77

60n2
17 ln213@g2 lnn1C~n11!#G J , ~94!

whereg is Euler’s constant, andC refers to the logarithmic
derivative of theG function. ForP states (l 51), this for-
mula reduces to

A6,1~n,1,j !5
4

3F 1

15S 32
2

n2D 1S 12
1

n2D S 1

10
1

1

4
d j ,1/2D G ,

~95!

and is in agreement with our results. From our results forF,
we extract the following values for the coefficientsA6,0:

A6,0~3P1/2!521.147 68~1!, A6,0~3P3/2!520.597 56~1!
~96!

and

A6,0~4P1/2!521.195 68~1!, A6,0~4P3/2!520.630 94~1!.
~97!

The results forA6,0 are the main results of this work. They
are in excellent agreement with data obtained from numeri-
cal calculations by one of the authors~P.J.M.! and Y. K. Kim
@2#. Mohr and Kim calculated theF function defined in Eq.
~2! numerically forZ>10, treating the binding field nonper-
turbatively. By extrapolating their numerical data@2# to the
region of smallZ, we obtain the following estimates for the
remainder functionGSE,7 implicitly defined in Eq.~2!:

GSE,7~3P1/2,Z51!53.660.5,

GSE,7~3P3/2,Z51!52.660.5 ~98!

and

GSE,7~4P1/2,Z51!53.960.5,

GSE,7~4P3/2,Z51!52.860.5. ~99!

The uncertainties inGSE,7are used to estimate the theoretical
uncertainty from the one-loop contribution. When modeling

the numerical data, it must be taken into account that, as
noted by Karshenboim@20#, A7,1 coefficients vanish forP
states. Values ofA6,0 and GSE,7 for 2P states are given in
Ref. @1#. We use the following implicit definition of the
Lamb shiftL:

E5mr@ f ~n, j !21#2
mr

2

2~m1mN!
@ f ~n, j !21#21L1Ehfs,

~100!

where E is the energy level of the two-body system and
f (n, j ) is the dimensionless Dirac energy,m is the electron
mass,mr is the reduced mass of the system, andmN is the
nuclear mass. It should be noted that we consider the hfs-fs
mixing term as a contribution to the hyperfine structure. The
small hfs-fs-mixing correction, which is discussed in Ref.
@21#, mixes theF51 sublevels of theP1/2 andP3/2 states and
shifts the center of the hyperfine levels. It should be taken
into account when the fine structure is deduced from preci-
sion experiments.

In order to calculate the Lamb shift, we include the
Barker-Glover correction to hydrogen energy levels@22#,
which we refer to as the (Za)4 recoil correction. We also
include the (Za)5 recoil correction calculated by Salpeter
@23#, and the results@24# for recoil corrections of order
(Za)6mr /mN . The results for recoil corrections of order
(Za)6mr /mN have been confirmed by Pachucki~see Chap. 5
of Ref. @1#!. We include contributions from the higher-order
two-loop correction of order (a/p)2(Za)6ln2(Za)22 corre-
sponding to theB6,2 coefficient@25#, and for three-loop cor-
rections in lowest order. The theoretical error from the two-
loop contribution (B6,1 and higher terms! is estimated as half
the contribution from the recently calculatedB6,2 coefficient
@25#. The higher-order contributions due to vacuum polariza-
tion of order a/p(Za)6 can be obtained by analyzing the
small distance behavior of the Dirac wave function, i.e., by
evaluating the matrix element of the Uehling potential~see
e.g.,@26#!,

VVP~r !5
a~Za!

m2 F2
4

15
d~r !2

1

35

¹2

m2
d~r !1O„¹4d~r !…G ,

~101!

with P-state wave functions expanded in powers ofZa. We
obtain the results

A60
vac~nP1/2!52

3

35

n221

n2
~102!

and

A60
vac~nP3/2!52

2

105

n221

n2
~103!

for the leading term. We have also evaluated the contribution
of the Uehling potential numerically without expansion in
Za, with the results

GU,7~3P1/2,Z51!50.0455, GU,7~3P3/2,Z51!50.0249,
~104!
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and

GU,7~4P1/2,Z51!50.0480, GU,7~4P3/2,Z51!50.0262,
~105!

where the functionGU,7 is defined in analogy withGSE,7.
The contribution of the higher-order terms is negligible com-
pared to the uncertainty in the higher-order self-energy
terms. The Wichmann-Kroll vacuum polarization contribu-
tion is expected to be of order (Za)2 times the Uehling
correction, and is not included here.

The above-mentioned contributions to the Lamb shift are
listed in Tables III and IV for the states under investigation.
It should be noted that the reduced mass dependence of the
terms must be restored in low-Z systems to obtain the correct
value for the Lamb shift. Terms which are caused by the
anomalous magnetic moment of the electron acquire a factor
(mr /me)

2 ~wheremr is the reduced mass of the system, and
me the mass of the electron!, all other contributions to the
Lamb shift acquire a factor (mr /me)

3. In addition, the argu-
ment of the logarithms ln@(Za)22# must be replaced by
ln@(me/mrZa)22#. The relevant formulas are also given in
Ref. @3#.

It should also be noted that for two- and three-loop cor-
rections in respective lowest order (a/p)2(Za)4 and
(a/p)3(Za)4, only the anomalous magnetic moment of the
electron contributes to the Lamb shift forP states, because
the Dirac form factorF1(q2) is infrared finite in two- and
three-loop order. So it is only the contribution from the mag-

netic form factorF2(q250) which persists. The calculation
of the contribution to the Lamb shift is then straightforward.

We obtain the following theoretical results for the Lamb
shift of 3P and 4P states:

L~3P1/2!523473.75~3! kHz, ~106!

L~3P3/2!54037.75~3! kHz, ~107!

L~4P1/2!521401.52~1! kHz, ~108!

L~4P3/2!51767.30~1! kHz. ~109!

The theoretical values for the fine-structure splitting, using
the 1987 Cohen-Taylor value ofa215137.035 989 5(61)
@27#, are as follows:

DEfs~3P!53 250 089.8~3! kHz, ~110!

DEfs~4P!51 371 130.0~1! kHz. ~111!

For 2P states, the theoretical value isDEfs(2P)
510 969 043(1) kHz@1#. The uncertainty in the theoretical
values for the fine-structure splitting is given by the uncer-
tainty in a. Any determination of the fine structure beyond
the quoted uncertainty would yield a value ofa improved
with respect to the 1987 value. Given the scattering of avail-
able data fora @28#, such a determination could be useful for
checking the consistency of measurements coming from dif-
ferent fields of physics.

The formula for the fine structure as a function ofa for
atomic hydrogen (Z51) is as follows:

DEfs~n!5E~nP3/2!2E~nP1/2!

5R`H a2S y

2n3
2

x2y3

2n3 D 1a3S y2

2pn3D
1a4S ae

~2!y2

p2n3
1

7y

32n3
1

9y

16n4
2

3y

4n5

1
xy2

4n5~11x!
D

1a5Fae
~3!y2

p3n3
1

2y3

pn3S DA6,0~n!1
1

15

n221

n2

2
1

3

n221

n2
ln~y21a22!D G

1a6S 2y3

pn3
DG~n!1

31y

256n3
1

45y

128n4
1

7y

64n5

2
45y

32n6
1

15y

16n7D J 1dLth~n!, ~112!

where the theoretical uncertainty in the difference of the
Lamb shift ofnP states is given by

TABLE III. Contributions to the Lamb shift in kHz for the 3P1/2

and 3P3/2 states.

Contribution 3P1/2 ~kHz! 3P3/2 ~kHz!

one-loop self-energy 23477.349(5) 4046.413(5)
two-loop self-energy 7.705(23) 23.782(23)
three-loop self-energy 20.064 0.032
vacuum polarization 20.122 20.027
(Za)4 recoil 0.641 20.320
(Za)5 recoil 24.705(13) 21.915(13)
(Za)6 recoil 0.139 0.139

Sum for 3P 23473.75(3) 4037.75(3)

TABLE IV. Contributions to the Lamb shift in kHz for the
4P1/2 and 4P3/2 states.

Contribution 4P1/2 ~kHz! 4P3/2 ~kHz!

one-loop self-energy 21403.102(2) 1770.887(2)
two-loop self-energy 3.252(10) 21.594(10)
three-loop self-energy 20.027 0.014
vacuum polarization 20.054 20.012
(Za)4 recoil 0.270 20.135
(Za)5 recoil 21.915(5) 21.915(5)
(Za)6 recoil 0.061 0.061

Sum for 4P 21401.52(1) 1767.30(1)
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dLth~2!580 Hz, dLth~3!530 Hz, dLth~4!510 Hz.
~113!

The mass ratios are

x5me /mp and y5mr /me51/~11x!. ~114!

DA6,0(n) andDG(n) are defined as

DA6,0~n!5A6,0~nP3/2!2A6,0~nP1/2!,

DG~n!5GSE,7~nP3/2!2GSE,7~nP1/2!. ~115!

For practical purposes, then dependence ofDGSE,7(n) may
be suppressed, because it is a very small contribution~in the
1-Hz range!, and we may assumeDGSE,7(n)'21.0. The
two- and three-loop coefficients to the anomalous magnetic
moment are given by@28#

a2
~e!520.328 478 965, a3

~e!51.181 241 56. ~116!

VI. CONCLUSIONS

The analytic calculation of higher-order binding correc-
tions to the Lamb shift of excitedP states has been described
in this paper. We provide more accurate theoretical values of
the Lamb shift for 3P and 4P states in hydrogenlike systems.
We also give a formula for the fine structure as a function of
a ~for 2P, 3P, and 4P states!, which may be used to deter-
minea from an improved measurement of the fine structure.

With the possibility of substantial improvement in the
precision of spectroscopic experiments~trapped atoms!, a
better determination ofa from measurement of the fine

structure might be within reach in the near future. Such a
determination of the fine-structure constanta, from the ef-
fect on which its name is based, would complement other
high precision determinations from solid-state physics and
the anomalous magnetic moment of the electron.

We note that there are deviations of experimental data for
excited nS-nP transitions from theory by more than one
standard deviation but less than two standard deviations~see
Ref. @21#, and references therein!. However, both the theory
of the Lamb shift and spectroscopic techniques have im-
proved since the measurements were made, so one might
expect a more precise comparison of theory and experiment
in the future. The present uncertainty in the theory would in
principle allow a determination of the fine-structure constant
with a relative uncertainty of less than five parts in 109.
However, at this level of precision additional theoretical
work might be needed to address questions such as asymme-
tries in the natural line shape. We only mention that, for
excited states, an experimental determination of the fine
structure could be simplified by the slower decay~narrower
line width! of the higher excitedP states@8#.

ACKNOWLEDGMENTS

The authors thank D.F.G. for continued support~Contract
No. SO333/1-2!. We would like to thank K. Pachucki,
S. Karshenboim, and J. Sims for stimulating and helpful dis-
cussions, and J. Urban for carefully reading the manuscript.
P.J.M. acknowledges the Alexander von Humboldt Founda-
tion for continued support. We also wish to acknowledge
support from BMBF and from the Gesellschaft fu¨r Schweri-
onenforschung.

@1# U. D. Jentschura and K. Pachucki, Phys. Rev. A54, 1853
~1996!.

@2# P. J. Mohr and Y. K. Kim, Phys. Rev. A45, 2727~1992!.
@3# J. Sapirstein and D. R. Yennie, inQuantum Electrodynamics,

edited by T. Kinoshita~World Scientific, Singapore, 1990!, p.
560.

@4# G. W. Erickson and D. R. Yennie, Ann. Phys.~N.Y.! 35, 271
~1965!; 35, 447 ~1965!.

@5# S. Klarsfeld and A. Maquet, Phys. Lett.43B, 201 ~1973!.
@6# G. W. F. Drake and R. A. Swainson, Phys. Rev. A41, 1243

~1990!.
@7# K. Pachucki, Phys. Rev. A46, 648 ~1992!; Ann. Phys.~N.Y.!

226, 1 ~1993!.
@8# H. A. Bethe and E. E. Salpeter,Quantum Mechanics of One-

and Two-Electron Atoms~Plenum, New York, 1957!.
@9# P. J. Mohr, Ann. Phys.~N.Y.! 88, 26 ~1974!.

@10# P. J. Mohr, Ann. Phys.~N.Y.! 88, 52 ~1974!.
@11# P. J. Mohr, Phys. Rev. A26, 2338~1982!.
@12# P. J. Mohr, Phys. Rev. A46, 4421~1992!.
@13# C. Itzykson and J. Zuber,Quantum Field Theory~McGraw-

Hill, New York, 1980!.
@14# S. Wolfram,Mathematica-A System for Doing Mathematics by

Computer ~Addison-Wesley, Reading, MA, 1988! ~endorse-
ment by NIST is not implied!.

@15# R. A. Swainson and G. W. F. Drake, J. Phys. A24, 79 ~1991!.
@16# H. Buchholz, The Confluent Hypergeometric Function

~Springer-Verlag, New York, 1969!.
@17# H. Bateman,Higher Transcendental Functions~McGraw-Hill,

New York, 1953!.
@18# M. Gavrila and A. Costescu, Phys. Rev. A2, 1752~1970!.
@19# M. Lieber, inRelativistic, Quantum Electrodynamic, and Weak

Interaction Effects in Atoms, edited by W. R. Johnson, P. J.
Mohr, and J. Sucher~AIP, New York, 1989!, p. 445.

@20# S. Karshenboim, Zh. E´ ksp. Teor. Fiz.106, 414 ~1994! @Sov.
Phys. JETP79, 230 ~1994!#.

@21# F. Pipkin inQuantum Electrodynamics~Ref. @3#!, p. 696.
@22# W. A. Barker and F. N. Glover, Phys. Rev.99, 317 ~1955!.
@23# E. Salpeter, Phys. Rev.87, 328 ~1952!.
@24# E. Golosov, A. S. Elkhovskii, A. I. Milshtein, and B. Khriplo-
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