Magnetic ordering in the spinel compound Li\[Mn_{2-x}Li_x\]O₄(x=0, 0.04)

John Gaddy
Jagat Lamsal
Marcus Petrovic
Wouter Montfrooij
Alexander Schmets

See next page for additional authors

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work

Part of the Physics Commons

Recommended Citation
Gaddy, John; Lamsal, Jagat; Petrovic, Marcus; Montfrooij, Wouter; Schmets, Alexander; and Vojta, Thomas, "Magnetic ordering in the spinel compound Li\[Mn_{2-x}Li_x\]O₄(x=0, 0.04)" (2009). Faculty Research & Creative Works. Paper 614.
http://scholarsmine.mst.edu/faculty_work/614

This Article is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
Magnetic ordering in the spinel compound Li[Mn$_{2-x}$Li$_x$]O$_4$ (x=0,0.04)

John Gaddy, Jagat Lamsal, Marcus Petrovic, Wouter Montfrooij, Alexander Schmets, and Thomas Vojta

1Department of Physics and Missouri Research Reactor, University of Missouri, Columbia, Missouri 65211, USA
2Reactor Institute Delft, Technical University of Delft, 2629 JB Delft, The Netherlands
3Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

(Received 16 September 2008; accepted 1 December 2008; published online 11 March 2009)

The two B-site ions Mn$^{3+}$ and Mn$^{4+}$ in the stoichiometric spinel structure LiMn$_2$O$_4$ form a complex, columnar ordered pattern below the charge-ordering transition at room temperature. On further cooling to below 66 K, the system develops long-range antiferromagnetic order. In contrast, whereas lithium-substituted Li[Mn$_{2-x}$Li$_x$]O$_4$ also undergoes a charge-ordering transition around room temperature, it only displays frozen in short-range magnetic order below ~25–30 K. We investigate to what extent the columnar charge-order pattern observed in LiMn$_2$O$_4$ can account for the measured magnetic ordering patterns in both the pure and Li-substituted (x=0.04) compounds. We conclude that eightfold rings of Mn$^{4+}$ ions form the main magnetic unit in both compounds (x=0,0.04), and that clusters formed out of these rings act as superspins in the doped compound.

The ground state properties of the known lithium-based cubic spinel compounds LiTi$_2$O$_4$ range from BCS superconductivity,1 [T=Ti], via heavy fermion behavior2 [T=V] to frustrated antiferromagnetism3,4 [T=Mn]. In these systems, the divalent B-site ions (3+ and 4+) have an octahedral oxygen surrounding, while the Li$^+$ ions occupy the A-sites. In this paper we focus on the magnetism in the Mn compound. Above ~300 K, LiMn$_2$O$_4$ is an electron-hopping conductor, and the system undergoes a charge-ordering (CO) transition on cooling down. Similar to the CO transition in magnetite,5 the B-site octahedra are slightly deformed and a structural transition accompanies the CO transition. However, unlike for magnetite, the Mn$^{2-}$–Mn$^{4+}$ charge-ordered structure has (most likely) been resolved by Rodriguez-Carvajal et al.6

In stoichiometric LiMn$_2$O$_4$ the Mn$^{3+}$ ions line up in columns along the c-axis6 when cooled to below 300 K, see Fig. 1(a). Multiple types of Mn$^{3+}$ sites can be distinguished. One type is located in cubes of four Mn$^{3+}$ ions and four O$^{2-}$ ions (Mn–O distance=2.05 Å) stacked along the c-direction. These cubes are at the center of eightfold rings of Mn$^{4+}$ ions. The Mn$^{4+}$ ions within these rings couple antiferromagnetically (AF) to each other through a 90° Mn–O–Mn exchange. The spaces in between neighboring rings are filled with the other types of Mn$^{3+}$ ions, which thus form columns in the c-direction. The unit cell (a=24.74 Å, b=24.84 Å, and c=8.20 Å) houses eight eightfold rings.6 The Mn$^{4+}$ rings only interact with other rings via the intervening Mn$^{3+}$ ions. When cooled to below 66 K, AF ordering develops,7 but the ordered structure has not been resolved yet.

The Li-doped material Li[Mn$_{2-x}$Li$_x$]O$_4$ has also been studied in detail,4 because of its applications as a battery material.5 When a small amount of Li is substituted on the Mn sites, the material retains its capacity for removal of Li from the A-sites without affecting the overall spinel structure (hence its use in lithium batteries), but the ~300 K structural phase transition no longer takes place, even though the CO transition is unaffected. (Suppression of the structural transition greatly enhances the lifetime of the battery material during charging/discharging cycles.5 Neutron scattering studies3 on the doped material have shown that long-range magnetic no longer takes place, but instead the material appears to enter a spin glass phase around 25–30 K (depending on the exact amount of Li substitution).

Schimmel et al.4 described the short-range order in the glass phase of Li[Mn$_{2-x}$Li$_x$]O$_4$ (x=0.04) by a network of non-linear Mn$^{4+}$ chains, with an average correlation length of

![FIG. 1. (Color online) The proposed (Ref. 6) charge-ordered pattern for LiMn$_2$O$_4$. The figures show a projection down the c-axis. (a) The Mn$^{4+}$ ions form eightfold rings, and the Mn$^{3+}$ ions are located in between the rings and inside of the rings. Shaded cubes signify lattice positions where the Mn ions interact through the Mn–O–Mn exchange interaction. The numbers inside the rings show their z position. (b) Upon Li substitution on the Mn sites or Mn removal, some Mn$^{4+}$ ions will become Mn$^{3+}$ ions, leading to modified rings and linked rings, some possibilities of which are shown. The dashed lines delineate the clusters.](https://jap.aip.org/jap/copyright.jsp)
about four to five ions. While this description gives a satisfactory description of the observed elastic scattering, it is not consistent with the level of Li doping, nor does it explain the dynamics. As to the former objection, only 1 in 50 Mn$^{4+}$ ions will be substituted with Li for $x=0.04$, and even the inclusion of vacancies should leave chains well in excess of 25 members. As to the latter, if the structural units were indeed that small, we should expect to see a difference in the quasielastic scattering. As to the latter, if the structural units were indeed that small, we should expect to see a difference in the quasielastic scattering. Thus, the Mn$^4+$–Mn$^4+$ AF interaction is stronger than the Mn$^3+$–Mn$^3+$ and the Mn$^3+$–Mn$^4+$ interactions. Based on this alone, it would make sense for the Mn$^4+$ ions in the eightfold clusters to line up at some finite temperature. From the ordering transition in the undoped compound, the temperature at which this happens is approximately 66 K.

The doping with Li on the Mn sites changes Mn$^{3+}$ ions into Mn$^{4+}$. In a unit cell that has 144 Mn ions (Fig. 1) the Li substitution is about 1:50, or roughly three Mn atoms per unit cell. As a direct consequence, about eight Mn$^{3+}$ ions will change to Mn$^{4+}$. This in turn leads to a unit cell that now has ring clusters of 7, 8, and 9 members. Therefore, it is very likely that structural units are present in the glass phase that are much larger than clusters of four to five Mn$^{4+}$ ions.

In this paper we investigate whether the ordering details of this glass phase can be linked to the Rodriguez-Carvajal (RC) structure for undoped LiMn$_2$O$_4$ (Fig. 1). We argue that the magnetic ordering in Li[Mn$_{12}$–Li]O$_4$ is indeed closely linked to the CO pattern in the parent compound. At ~ 66 K elastic magnetic scattering by the Mn$^{4+}$ ions starts to develop in the doped compound, which turns out to be associated with the eightfold rings. We argue that these ring clusters act as AF superspins: The moments within a cluster become fully AF-aligned below 66 K, but they can all flip in unison similar to the more familiar ferromagnetic superspin. Below $\sim 25–30$ K this superspin flipping becomes so slow that these clusters resemble static clusters without long-range order between them. We discuss these claims in the following.

Inelastic neutron scattering experiments showed that the dynamics associated with Mn$^{4+}$ ions is much slower than that of the Mn$^{3+}$ ions, and freezes out below 25–30 K4. The scattering associated with the Mn$^{3+}$ ions shows spin reorientations down to the lowest temperatures even though some Mn$^{3+}$ scattering becomes elastic. Thus, the Mn$^{4+}$–Mn$^{3+}$ AF interaction must be stronger than the Mn$^{4+}$–Mn$^{3+}$ and the Mn$^{3+}$–Mn$^{3+}$ interactions. Based on this alone, it would make sense for the Mn$^{4+}$ ions in the eightfold clusters to line up at some finite temperature. From the ordering transition in the

FIG. 2. The energy dependence of the scattered intensity $I(q,E)$ for 12 q-values $0.8 < q < 1.9$ Å$^{-1}$ at $T=50$ K (Ref. 4). The energy resolution is given by the sharp central line due to incoherent nuclear scattering. After normalizing to $I(q)=I_0(q,E)E$ (Ref. 9), all data points collapse onto a single curve, showing that the time scale of the dynamics is independent of q. The figure contains 1600 independent data points.

FIG. 3. (Color online) The observed scattering in Li[Mn$_{12}$–Li]O$_4$ at 30 K (Ref. 4) (circles). (a) A threefold cluster of Mn$^{4+}$ ions (dashed line) or an eightfold ring cluster (solid line) fail to capture the width of the observed scattering. (b) Clusters consisting of two rings linked along the a-direction (solid line, top right cluster in Fig. 1(b)) capture most of the observed scattering when the Mn spins are aligned in the ab-plane. (c) same as (b), but with the spins aligned along the c-direction.
two rings in them are bound to be present; however, single crystal data are required to determine the exact distribution. From the data shown in Fig. 3(b) it would appear that multiple ring clusters linked in the ab-plane might be invoked to yield a perfect agreement with the data. We did not pursue this avenue of perfect agreement since this would involve using the position of links between rings as adjustable parameters. Nonetheless, given the level of agreement [Fig. 3(b)] in combination with the lack of any length scale in the dynamics, we can safely conclude that Mn$^{4+}$ clusters are indeed present in Li[Mn$_{2-x}$Li$_x$]O$_4$, and that these clusters most likely have eightfold rings as their main structural units with the Mn moments in the ab-plane fully lined up within a cluster below 66 K. Between ~25 and 66 K the clusters then act as superspins, and the superspins freeze out below ~25–30 K.

Having established the ordering within the Mn$^{4+}$ clusters, it is interesting to speculate whether the long-range magnetic ordering in pure LiMn$_2$O$_4$ (Ref. 7) is also mainly associated with the ordering of the Mn$^{4+}$ ions. If so, then at 66 K the Mn$^{4+}$ ions would line up AF within the rings, with long-range order being associated with a particular stacking pattern of these rings in the unit cell. The Mn$^{3+}$ ions would only act as mediators to establish the order among the rings. We find that this speculation cannot describe all the details of the measured diffraction pattern even though we find qualitative agreement. First, all but one (a small peak at 0.6 Å$^{-1}$) of the magnetic peaks indexes onto the RC-unit cell, they do not index onto a smaller sized unit cell. Second, a stacking pattern wherein neighboring rings line up AF is able to reproduce roughly the intensities of the main peaks, and the absence of many other peaks. However, there is no stacking pattern of the eightfold rings that can reproduce the exact intensities of the allowed reflections. In addition, while there still is diffuse scattering present at 2 K, this scattering is too weak to account for all the Mn$^{3+}$ ions. Therefore, it is likely that some Mn$^{3+}$ ions partake in the ordered structure. At present, we do not know whether these ordered Mn$^{3+}$ ions would be the Mn$^{3+}$ cubes within the rings, or the Mn$^{3+}$ ions located between neighboring rings. Overall, given the partial agreement of a structure consisting of ordered eightfold rings with the observed intensities, and the ability to index the peak positions (and lack thereof) using the RC-unit cell, it is highly likely that LiMn$_2$O$_4$ has eightfold rings consisting of AF-aligned Mn$^{4+}$ ions in its structure.

In conclusion, we have shown that the CO pattern as proposed for LiMn$_2$O$_4$ survives in Li-doped Li[Mn$_{2-x}$Li$_x$]O$_4$. The main energy scale for magnetic ordering is that of the antiferromagnetic Mn$^{4+}$–Mn$^{4+}$ interaction. The Mn$^{4+}$ ions in the eightfold rings line up below 66 K, and in the undoped sample these rings likely form the backbone of the long-range ordered structure. In the doped sample, doping induced linking between these rings results in clusters that act as superspins, which freeze out below ~25–30 K.

This material is based on work supported by the Department of Energy under Award No. DE-FG02-07ER46381 and by the University of Missouri Research Board (Grant No. RB-07-52).
