Epoxy Resin Grout System for Solutions to Traditional Geotechnical Problems

A. V. Shroff
M.S. University

D. L. Shah
M.S. University

D. P. Amin
M.S. University

Follow this and additional works at: http://scholarsmine.mst.edu/icchge

Recommended Citation

http://scholarsmine.mst.edu/icchge/2icchge/icchge-session5/17

This Article - Conference proceedings is brought to you for free and open access by the Geosciences and Geological and Petroleum Engineering at Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
Proceedings: Second International Conference on Case Histories in Geotechnical Engineering, June 1-5, 1988, St. Louis, Mo., Paper No. 5.66

Epoxy Resin Grout System for Solutions to Traditional Geotechnical Problems

A.V. Shroff
Professor, Applied Mechanics Department, M.S. University, Baroda, India

D.L. Shah
Research Fellow, M.S. University, Baroda, India

D.P. Amin
Research Student, University, Baroda, India

SYNOPSIS: Use of chemicals for foundation treatment and sealing of crack is of recent origin. The aim of this paper is to find time-viscosity and time-strength relationships of epoxy grout system for proper flow mechanism and strength interaction with rock collected from dam sites of India. The bonding mechanism of gel in the injected mass is explained with the help of Scanning electron microscopy and Infra-red spectroscopy. After trial field grouting the stratascopy has revealed better bonds of moist surface with flexibility to accomodate movement before bond or shear failure occurred and had lower volumetric shrinkage during curing.

INTRODUCTION

Cement grouting is well recognised method available to the Civil engineering practice. Epoxy resin have often used for various problems in civil engineering works in India, during the last decades. The sealing of cracks (Koyna, 1968; Konar, 1971; Hirakund, 1976) in concrete structures, plugging of leaks in hydraulic structures and bonding of fresh concrete to hardened concrete are the main applications which are quite wide spread. The main traditional Geotechnical problem for foundations in jointed and fractured rocks is the low bearing power against the structural stresses. The recently innovated application of epoxy grouting of jointed and fractured rock for reducing mass permeability and increasing compressive and tensile strength of bed rock (Norad dam, 1968). For the last application, the correlation of initial rheology of epoxy grout and the interacted strength of set grout at joints are very essential.

GEL FORMATION AND ITS MECHANISM

When catalyst or hardener is mixed with base resin, the formation of gel occurs in three sequential steps: (1) Formation of primary micro gel, (2) Formation of secondary micro gel, and (3) Formation of macro gel.

The reactivities of primary and secondary amine groups of hardener give a linear structure in the alkaline media due to a combination of exothermic heat of reaction, the temperature will rise in the vicinity of the resin molecules, resulting into reaction of secondary amine group, causing the increase of vacant places between the molecules reflecting increase of fluidity. The growth of nuclei continue until the reactive polymer molecules can diffuse to the reactive sites of the nuclei. During this process several new nuclei are also developed resembling the crystallization process.

The primary micro gel and growing nuclei begin to interact each other and give rise to new nuclei for the secondary micro gel increasing viscosity of the system.

At a critical solid concentration the secondary micro gel pack together very suddenly and the experimental gel point is observed (Fig.1).

GEL FORMATION AND ITS MECHANISM

When catalyst or hardener is mixed with base

resin, the formation of gel occurs in three sequential steps: (1) Formation of primary micro gel, (2) Formation of secondary micro gel, and (3) Formation of macro gel.

The reactivities of primary and secondary amine groups of hardener give a linear structure in the alkaline media due to a combination of exothermic heat of reaction, the temperature will rise in the vicinity of the resin molecules, resulting into reaction of secondary amine group, causing the increase of vacant places between the molecules reflecting increase of fluidity. The growth of nuclei continue until the reactive polymer molecules can diffuse to the reactive sites of the nuclei. During this process several new nuclei are also developed resembling the crystallization process.

The primary micro gel and growing nuclei begin to interact each other and give rise to new nuclei for the secondary micro gel increasing viscosity of the system.

At a critical solid concentration the secondary micro gel pack together very suddenly and the experimental gel point is observed (Fig.1).
The higher cross linked density reflects in better coherence by bonding with dry and wet surfaces of mass to be interacted.

Infra-red spectroscopy of a unit cell of set mass gives characteristics bonds of methyle or methylene, and phenyl groups at 1440 and 1505 cm⁻¹ bends.

DEVELOPMENT OF GROUT MIX

As per the requirement of resultant gelified mass, either rigid, elastic or elastoplastic, the unit cell is cultivated employing conceptual framework approach by propertionating resin, hardener and water components. From the unit cell a repeatable unit in the polymer structure is developed.

Gel time increases upto resin: hardener ratio of two, thereafter it drops. The addition of water effectively reduces the gel time (Fig.2).

RHEOLOGICAL ASPECTS

Rheological analysis of developed grout system are carried out by time-viscosity study employing Brookfield synchroelastic viscometer, U.S.A., and newly developed Orifice type glass cone viscometer. It seems from time-viscosity curve (Fig.3) that initial viscosity drops to 50 per cent up to 12 minutes, thereafter increases to semi-viscous limiting injection stage transforming suddenly to gel stage at about 35 minutes. The time-viscosity plot suggest the proper injection time of 12 minutes and limiting injection time of 24 minutes after mixing. Shear modulus data as obtained from the wave velocity pattern of pulse transmission through gelified mass interprets that gel mass which was visco-elastic before gel time transforms to elastic at gel time.

STRENGTH ASPECTS

Triaxial, unconfined compressive strength and tensile strength at 1 hour, 14 days and 21 days are increased upto resin: hardener ratio two, which tends to decrease thereafter. Unconfined compressive strength as measured on 200 T capacity 'VEB-Wekstofforuf maschinen', for resin: hardener ratio of two, gives 662.8 kg/cm², 775.36 kg/cm², 800.12 kg/cm² at 1 hour, 14 days and 21 days curing time (Fig.4).

Stress-strain curve (Fig.5) indicates that peak stress increases with increase of curing time reverting strength-time relationship of epoxy set mass as strongly time dependent. Two categories basically identified, mainly time dependent linear elastic and time dependent non-linear.
elesto-plastic leading to brittle failure. Increase of resin: hardener ratio increases the brittleness in the system. As resin: hardener ratio increases to two, initial tangent modulus drops. Per cent failure strain decreases initially with increase of curing period upto 14 days and tends to remain constant thereafter. Trace amount of water in resin-hardener system makes the set mass elesto-plastic rather than brittle plastic exhibiting bulging at failures. Stress-strain curve of raw grout portrayed during tensile test conforms to set mass similar to St.Venant material. Initial tangent modulus, failure strain and creep strain of tensile stress-strain curves are optimum at resin: hardener ratio of two. High pressure triaxial test give cohesion value of 450 kg/cm².

GROUTED ROCK MASS

Considering the above time viscosity and strength behaviour the grout is selected for injection purpose consists of optimum ratio of resin: hardener two, along with five per cent dilution.

The rocks collected from various sites as mentioned earlier possess the following magascopic and microscopic characters:

(A) (i) Porphryetic Basalt (collected from the site near Panam dam) - Minute fractures in horizontal direction and moderate weathering.
(ii) Agglomerate Igneous (collected from the site near to Karjan dam) - trap, rock pieces are seen enclosed in the ground mass which is heterogenous. Heterogenity is more in horizontal direction, prominent fracturing, moderate weathering.

(B) (i) Metamorphic, Criss-cross ion veinlets bearing (collected from construction site nearer to Chhuchapura) - bends are observed in horizontal direction, veinlets are noticed in horizontal direction, common fracturing and moderate weathering.
(ii) Serpentine bearing metamorphic (collected from construction site nearer to Chhuchapura) Greenish white bends observed in horizontal direction, while minute fracture seen in vertical direction, prominent fracturing and moderate weathering.

Samples of 10cmX10cmX10cm with cut configuration at various orientation are produced and are placed in a square grouting box. Two drill holes from top surface of the above specimen are made upto the location cut to intersect maximum discontinuities. A suitable injection gun is developed for grouting (Fig.6).

A grouting operation is normally carried out to the lowest point to the highest. After filling the gun with epoxy grout, it is connected with tubing to an air compressor. A pressure of 4 to 7 kg/cm² is used for the injection. A polyethylene nozzle of the gun is inserted into the drill hole of the rock specimen. Injection is continued till the resin begins to ooze from the another drill hole. The process is continued until the cracks are completely sealed.

1. Brass top cover fixed with clamps.
2. Inlet for compressed air
3. Outlet
4. Compressed air
5. Polyethylene piston
6. Resin mix
7. Brass casing
8. High density polyethylene syringes

Fig. 6 Injection Gun.

Fig. 7 Rock specimen after failure.

STRENGTH OF GROUTED MASS

For these two groups of rock, adhesion over discontinuities and cracks by epoxy grout always exceed the strength of the rock (Fig.7).
CONCLUSIONS

(i) Epoxy grout system has controlled gelification time, insoluble gel in water, high gel strength, and high long term compressive and tensile strength.

(ii) This grout system identifies following rheological changes during sol to gel: decrease of viscosity from original viscosity due to inherent temperature, increasing further to semi viscous, non-Newtonian converting suddenly to elasto-viscous gelified orange mass.

(iii) Strength time relationship of set mass is strongly time dependent. For evaluation of deformation two categories basically identified: mainly time dependent linear elastic and time dependent non-linear elasto-plastic leading to brittle failure. Trace amount of water and resin hardener system makes the set mass elasto-plastic rather than brittle plastic exhibiting bulging at failure. During tensile strength stress strain behaviour conforms to St. Venant material.

(iv) For igneous and metamorphic group of rocks, adhesion over discontinuities and cracks by epoxy grout always exceed the strength of the rock. Rupture always occurs through rock and never through bonded crack.

(v) After trial field grouting, the stratscopic study has revealed better bonds of moist surface with flexibility to accomodate movement before bond or shear failure occurred alongwith lower volumetric shrinkage.

ACKNOWLEDGEMENT

This research work is performed at Geotechnical Engineering Division, Applied Mechanics Dept. M.S.University of Baroda, Gujarat, India.

REFERENCES

