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Reply to “Comment on ‘Classical description of H(1s) and H∗(n = 2) for cross-section calculations
relevant to charge-exchange diagnostics”’

N. D. Cariatore,1 S. Otranto,1 and R. E. Olson2

1IFISUR and Departamento de Fı́sica, Universidad Nacional del Sur, 8000 Bahı́a Blanca, Argentina
2Physics Department, Missouri University of Science and Technology, Rolla, Missouri 65401, USA

(Received 9 March 2016; published 29 June 2016)

In reply to the Comment of Jorge et al. [Phys. Rev. A 93, 066701 (2016)], we agree and reconfirm that
the alternative classical trajectory Monte Carlo method (called hydrogenic-Z-CTMC) radial distributions for
H∗(n = 2) we recently published are not stable in time. However, we show that such lack of stability which
is more noticeable for H(2s) than for H(2p) is due to the initialization procedure employed and not to the
hydrogenic-Z-CTMC method itself. A new set of completely stable hydrogenic-Z-CTMC calculations for
H∗(n = 2) is introduced and found in very good agreement with standard microcanonical results reinforcing our
previous findings. A second criticism of Jorge et al. concerning the number of components in hydrogenic-Z-
CTMC with n > 1 for H(1s) is shown not to have a significant impact on relative (n,l) populations in the final
state.

DOI: 10.1103/PhysRevA.93.066702

For more than five decades, the classical trajectory Monte
Carlo (CTMC) method has provided theoretical insight for
a wide range of atomic and molecular collision processes.
Despite the fact that the method relies exclusively on New-
ton’s physical laws to describe the collision dynamics well
within the quantum-mechanical domain, the method has been
systematically used on collision systems for which an accurate
quantum treatment is still prohibitive in computational terms
such as those involving highly charged ions. Moreover, it
has provided complementary interpretations of processes for
which accurate quantum treatments are feasible.

In a recent work [1], we have revisited one of the main limi-
tations exhibited by the CTMC method for the hydrogen target,
which is particularly relevant to charge-exchange diagnostics
and the fusion plasma program. That is, the lack of the expo-
nential decreasing behavior of the radial distribution in the mi-
crocanonical formulation of the CTMC method. During the
last 35 years this problem has been tackled by different authors
who proposed different phase-space functions which recov-
ered the quantum-mechanical radial distribution for H(1s)
[2–4]. One of these is the denominated hydrogenic-E-CTMC
which uses a discrete summation of microcanonical ensembles
corresponding to different ionization potentials to reproduce
the quantal radial distribution via a least-squares fitting
procedure [3]. The main object of our study was the evaluation
of an alternative hydrogenic-Z-CTMC method which employs
different target nuclear charges in the discrete summation,
allowing it to retain the proper ionization potential of the target.
The motivation here stems from the limitations detected in
the hydrogenic-E-CTMC method to describe recent recoil-ion
momentum distributions in ion-atom collisions as well as
charge-exchange processes either at low impact energies or
involving highly charged ions. Initial studies were carried
out on H(1s), H∗(2s), and H∗(2p) targets and provided the
relevance of excited hydrogen for the fusion plasma program.
Interestingly, (n,l)-state-selective cross sections calculated for
H∗(n = 2) with the hydrogenic-Z-CTMC model for C6+,
N7+, and O8+ projectiles in the 10 keV/amu-150 keV/amu
impact energy range were almost indistinguishable from those
obtained with the standard microcanonical ensemble.

In their comment, Jorge et al. [5] criticize our methodology
along two main lines: (i) our initialization procedure for
H∗(n = 2), and (ii) they recall that the hydrogenic-Z-CTMC
model is not physically correct even for H(1s) and should not
be used at all. In what follows we will address these two issues.

The classical phase-space distribution used in [1] can be
expressed as follows:

ρ(r,p,n,l) =
∑

i=1

αiρ0(r,p,Zi,n,l).

The αi coefficients were determined by means of a least-
squares fitting procedure over the quantum-mechanical radial
distribution for the (n,l) state. In our study we initialized the
H∗(n = 2) target by sorting over the (n,l) quantum-mechanical
momentum distribution which for H∗(2s) has a node that at
t = 0 translates to the radial distribution. In their comment,
Jorge et al. show that this node is washed out very fast as
the system evolves provided that the Liouville equation is
not satisfied ([ρ0(r,p,Zi,n,l),H ] �= 0). We have corroborated
their statements. The nodal structures which at t = 0 a.u.
are predicted in the momentum and radial distributions are
rapidly lost. In Fig. 1, we show how the momentum and
radial distributions for H∗(2s) and H∗(2p) evolve for much
larger time intervals than those shown in their comment. These
are more representative of the typical times considered in
our simulations. We have performed tests within the time
constraint allowed for this reply and found minor changes
at the H∗(n = 2) cross-section level for different physically
meaningful projectile incidence time lapses. This is possibly
due to the fact that 75% of the H∗(n = 2) charge-exchange
cross sections shown correspond to H∗(2p), and that this target
is much more stable than H∗(2s) as can be inferred from Fig. 1.
However, below in Fig. 2 we report the sensitivity of the H∗(2s)
components of those cross sections by explicitly considering
three different projectile incidence time lapses of 300, 450,
and 600 a.u.

Provided that the genesis of the radial distributions’ insta-
bility for H∗(2s) and H∗(2p) was not the hydrogenic-Z-CTMC
method itself, i.e., the proposal of an expansion over distribu-
tions corresponding to different Z values, but our particular
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FIG. 1. Hydrogenic-Z-CTMC momentum and radial distributions for H∗(2s) and H∗(2p) as a function of time.
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FIG. 2. Hydrogenic-Z-CTMC n-state selective charge-exchange
cross-section sensitivity for 10 and 50 keV/amu C6+ collisions on
H∗(2s). Theories: black dots, results corresponding to Ref. [1]; red
dashed line: projectile incidence time lapse of 300 a.u.; green dotted
line: projectile incidence time lapse of 450 a.u.; blue dashed-dotted
line: projectile incidence time lapse of 600 a.u.

choice of the ρ0(r,p,Zi,n,l) distributions used which are not
perfectly stable for n = 2, we now present an alternative
hydrogenic-Z-CTMC scheme to fit an effective H∗(n = 2)
radial distribution built upon the quantum-mechanical radial
distributions in a statistical proportion of 75% H∗(2p) and
25% H∗(2s). Results are shown in Fig. 3. By initializing the
system using standard microcanonical ensembles ρM(r,p,Zi),
i.e., following a similar procedure to that used by the
hydrogenic-E-CTMC, we reproduce the radial distribution
without any possible chance of instability, provided that these

FIG. 3. Radial distribution for H∗(n = 2). The quantum-
mechanical result is built upon the quantum-mechanical distributions
for H∗(2s) and H∗(2p) by assuming relative contributions of 0.25
and 0.75 for each of them. The new hydrogenic-Z-CTMC method
is initialized by means of microcanonical distributions providing a
stable radial distribution.
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FIG. 4. n-state-selective capture cross section as a function of
the projectile energy following C6+, N7+, and O8+ collisions on
H∗(n = 2). Theories are shown by a blue dashed-dotted line for the
new hydrogenic-Z-CTMC, and a red dashed line for microcanonical
CTMC. Cross sections have been multiplied by factors in brackets to
facilitate visualization.

microcanonical distributions satisfy the Liouville equation.
The new hydrogenic-Z-CTMC scheme is then given by

ρnew(r,p,n) =
∑

i=1

αiρM(r,p,Zi).

FIG. 5. Line emission cross sections in the x-ray spectral range
as a function of impact energy for C6+ collisions on H∗(n = 2). The
cross sections are reduced to 1% of their value to mimic the power
reactor environment. Former results correspond to those published in
Ref. [1].

We point out that the original hydrogenic-Z-CTMC formula-
tion gets coincident with the new one for H(1s).

In Fig. 4 we present the n-state-selective capture cross
section as a function of the projectile energy following C6+,
N7+, and O8+ collisions on H∗(n = 2) calculated with the new
hydrogenic-Z-CTMC and are contrasted against the standard
microcanonical CTMC results. As previously observed, the
state selective cross sections are almost indistinguishable from
those obtained with the simple microcanonical ensemble.

In Figs. 5 and 6 we perform a more exhaustive analysis
of our models by revisiting the line emission cross sections
corresponding to Lyman and visible spectral range following
C6+ collisions on H∗(n = 2) that were shown in our article [1].

FIG. 6. Line emission cross sections in the visible spectral range
as a function of impact energy for C6+ collisions on H∗(n = 2). The
cross sections are reduced to 1% of their value to mimic the power
reactor environment. Former results correspond to those published in
Ref. [1].
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FIG. 7. n = 4 and n = 5 l-state-selective relative populations for 10, 50, and 100 keV/amu N7+ + H(1s) collisions. Theories: red solid
line: hydrogenic-Z-CTMC; green dotted line: hydrogenic-E-CTMC; blue dashed line: microcanonical CTMC.

These cross sections, which are reduced to 1% of their value
to mimic the power reactor environment, are of potential
relevance for the fusion reactor program and as such it is
imperative to rule out any possible doubt on their reliability.
In both figures, our new hydrogenic-Z-CTMC results are
contrasted to our former results of Ref. [1] and to the results
obtained using the microcanonical distributions. Very good
agreement is obtained within the three models throughout
the energy range explored of 10–100 keV/amu, reinforcing
our previous statements that the H∗(n = 2) target seems not
to be sensitive to the initialization procedure studied which

considers the correct ionization potential. Moreover, it clearly
indicates that the charge-exchange cross sections obtained with
the different methods are in agreement at the (n,l) level.

Now, we turn to the question about the eccentricities
employed in our initialization procedure for the H(1s)
case. In Fig. 7 we consider the dominant n = 4 and n = 5
l-state-selective relative population for charge exchange
following 10, 50, and 100 keV/amu N7+ + H(1s) collisions.
Provided that during the charge-exchange process the electron
tries to preserve its orbital eccentricity [6], any flaw in
the initial state angular momentum should translate to the

066702-4



COMMENTS PHYSICAL REVIEW A 93, 066702 (2016)

l-state-selective charge-exchange cross sections. From Fig. 7,
we conclude that the relative populations of l values provided
by the three models are all in good agreement with each other,
clearly indicating that the hydrogenic-Z-CTMC initialization
does not lead to any unphysical behavior as has been
questioned.

In summary, no definite initialization procedure is avail-
able at this time that can completely mimic the quantum-
mechanical phase-space distribution for hydrogen. Phase-
space distributions built with the aim to correct the radial
cutoff proper of the microcanonical distribution have at

the same time strengths and limitations provided they are
based on expansions in terms of different target nuclear
charges or ionization potentials. Present results suggest that
the hydrogenic-Z-CTMC model based on microcanonical
expansions can be safely used to describe charge-exchange
processes and its capabilities should be further explored,
particularly on other target atoms.

Work at Universidad Nacional del Sur is supported by
Grants No. PGI 24/F059 and No. PIP 112-201101-00749 of
CONICET (Argentina).
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