A novel thin film transistor using double amorphous silicon active layer

Jong Hyuni Choi
Chang-Soo Kim
Byung Cheon Lim
Jin Jang

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work

Part of the Biology Commons, and the Electrical and Computer Engineering Commons

Recommended Citation
Choi, Jong Hyuni; Kim, Chang-Soo; Lim, Byung Cheon; and Jang, Jin, "A novel thin film transistor using double amorphous silicon active layer" (1998). Faculty Research & Creative Works. Paper 463.
http://scholarsmine.mst.edu/faculty_work/463
A Novel Thin Film Transistor Using Double Amorphous Silicon Active Layer

Jong Hyun Choi, Chang Soo Kim, Byung Cheon Lim, and Jin Jang

Abstract—We have fabricated a novel low off-state leakage current thin-film transistor (TFT) using a chlorine incorporated amorphous silicon [a-Si:H:(Cl)] and amorphous silicon (a-Si:H) stacked active layer, in which conduction channel is formed in a-Si:H and a-Si:H:(Cl) is photo-insensitive material. The off-state photo-leakage current of the a-Si:H:(Cl)/a-Si:H TFT is much lower than that of a conventional a-Si:H TFT.

I. INTRODUCTION

Thin-film transistors (TFT’s) including an active layer of hydrogenated amorphous silicon (a-Si:H) or polycrystalline silicon have been widely employed as the pixel-driving elements of a liquid crystal display (LCD). Particularly, the a-Si:H TFT is widely used in the production of liquid crystal displays which require a high intensity backlight compared to conventional notebook personal computers, the main issue is to reduce the off-state leakage current under light illumination.

A-Si:H has high photoconductivity which results in a high off-state leakage current for an a-Si:H TFT under backlight illumination [2].

Cl incorporated hydrogenated amorphous silicon [a-Si:H:(Cl)] has been prepared by various deposition methods using SiH₄/Cl₂ mixtures to improve film quality [3], to improve the stability [4], or to increase the deposition rate [5].

The off-state leakage current of a-Si:H TFT under low illumination is related to its photoconductivity. The photoconductivity of a-Si:H:(Cl) is at least two orders of magnitude lower than that of undoped a-Si:H [6]. However, the performance of the a-Si:H:(Cl) TFT’s was found to degrade with increasing [SiH₄/Cl₂]/[SiH₄] ratio which was used to deposit the a-Si:H:(Cl) [7]. The degradation is especially very severe when the ratio is higher than 0.08. In the present work an a-Si:H:(Cl)/a-Si:H stacked layer was employed as the active layer for the TFT.

The a-Si:H:(Cl)/a-Si:H TFT’s show much lower off-state photo-leakage current than that of conventional a-Si:H TFT, and higher field effect mobility than that of an a-Si:H:(Cl) TFT.

II. EXPERIMENTS

The a-Si:H:(Cl) films were deposited by remote plasma chemical vapor deposition (RPCVD) using SiH₄/SiH₂Cl₂/H₂/He mixtures [8]. We used He as a nondepositing, exciting species. Helium was passed through the plasma generating region contained inside a cylindrical quartz tube of a diameter of 3.8 cm. Downstream from the plasma, in the deposition area, SiH₄/SiH₂Cl₂/H₂ was added for deposition of a-Si:H:(Cl) films. The flow rates of He, H₂ and SiH₄ were fixed at 100, 2, and 1 sccm, respectively. The substrate temperature was fixed at 300 °C throughout the deposition.

Fig. 1 shows a cross-sectional view of the a-Si:H:(Cl)/a-Si:H TFT. The transistor used in this study is a conventional inverted staggered structure. Four layers of 350 nm thick SiNₓ, 30 nm thick a-Si:H, 130 nm thick a-Si:H:(Cl), and 50 nm thick n⁺ a-Si:H were consecutively deposited in an RPCVD reactor. The SiNₓ layer was deposited by using a gas mixture of SiH₄ and NH₃ with 1.8% SiH₄ in NH₃ at the substrate temperature of 300°C. The undoped a-Si:H:(Cl) and the n⁺ a-Si:H were deposited from the gas mixtures of SiH₂Cl₂ and SiH₂Cl₄, and a mixture of 1% PH₃ and 99% SiH₄, respectively. The n⁺ a-Si:H of resistivity ~100 Ω cm, was used to ensure an ohmic contact with the source/drain metals. The Al was evaporated on the n⁺ a-Si:H and then patterned to be used as source/drain contacts. The n⁺ layer in the channel was etched using a CF₄ plasma. The ratio of channel width to channel length of the TFT was 60 µm/30 µm. The device was illuminated using the backlight of a TFT-LCD module to compare the differences in the off-state leakage currents under illumination between a-Si:H:(Cl)/a-Si:H TFT, a-Si:H:(Cl) TFT, and a-Si:H TFT’s.

III. RESULTS AND DISCUSSION

Fig. 2 shows the comparison of square root of drain current (Iᵣ) versus gate voltage (Vₕ) plots between an a-Si:H TFT, an a-Si:H:(Cl)/a-Si:H TFT, and an a-Si:H:(Cl) TFT deposited under the same conditions except the gas flow rates. The a-Si:H:(Cl) was deposited with a gas mixture of [SiH₂Cl₂]/[SiH₄] = 0.08. The field effect mobility and the threshold voltage of an a-Si:H:(Cl) TFT are 0.30 cm²/Vs and 7.51 V, respectively. However, the a-Si:H:(Cl)/a-Si:H TFT’s exhibited a field effect mobility of 0.45 cm²/Vs, and a threshold voltage of 5.09 V. Both the field effect mobility and the threshold voltage could be improved by adopting a two-layer staggered structure.
structure. It is noted that the a-Si:H TFT exhibited a field effect mobility of 0.5 cm
structure. It is noted that the a-Si:H TFT exhibited a field effect mobility of 0.5 cm
structure. It is noted that the a-Si:H TFT exhibited a field effect mobility of 0.5 cm

Fig. 3. Comparison of the I_d–V_g characteristics between

Fig. 3. Comparison of the I_d–V_g characteristics between

Fig. 3. Comparison of the I_d–V_g characteristics between

![Image](image-url)

Fig. 2. The comparison of $\sqrt{I_{th}}$–V_g plots between a-Si:H, a-Si:H:C:H(a-Si:H) TFT, and a-Si:H:C:H TFT, in which a-Si:H:C:H was deposited with a gas mixture of [SiH$_2$Cl$_2$]/[SiH$_4$] = 0.08.

![Image](image-url)

Fig. 4. The field effect mobility and threshold voltage as a function of a-Si:H layer thickness for the a-Si:H:C:H-a-Si:H TFTs.

![Image](image-url)

Fig. 4. The field effect mobility and threshold voltage as a function of a-Si:H layer thickness for the a-Si:H:C:H-a-Si:H TFTs.

Fig. 4. The field effect mobility and threshold voltage as a function of a-Si:H layer thickness for the a-Si:H:C:H-a-Si:H TFTs.

an equivalent a-Si:H TFT. With increasing [SiH$_2$Cl$_2$]/[SiH$_4$] ratio, the room temperature conductivity and conductivity activation energy decrease at first and then saturate [6], which is in contrast to conventional a-Si:H, in which the room temperature dark conductivity decreases if the conductivity activation energy increases because all conventional, un-doped a-Si:H films show n-type conduction. The anomalous relationship between room temperature conductivity and conductivity activation energy appears to be due to the p-type behavior of a-Si:H:C:H films [6]. The a-Si:H:C:H films deposited between [SiH$_2$Cl$_2$]/[SiH$_4$] ratio = 0.04 and [SiH$_2$Cl$_2$]/[SiH$_4$] ratio = 0.12 are p-type. The p-type a-Si:H has less photoconductivity because of the low mobility of hole is much less than that of electron [9].

IV. CONCLUSION

We have fabricated low off-state leakage current TFTs using a stack with Cl incorporated amorphous silicon [a-Si:H:C:H(a-Si:H)] and amorphous silicon (a-Si:H) as the active layer. The field effect mobility and threshold voltage of the a-Si:H:C:H(a-Si:H) TFT’s are better than those of a-Si:H:Cl TFT’s. The a-Si:H:C:H(a-Si:H) TFT’s exhibited a field effect mobility of 0.45 cm2/Vs, a threshold voltage of 5.09 V, and an off/on current ratio of $>10^5$. The off-state leakage currents of a-Si:H:C:H(a-Si:H) TFT under front as well as backlight illumination are much lower than those of conventional a-Si:H TFT’s. By adopting a-Si:H:C:H(a-Si:H) as an active layer in a TFT, the photo-leakage current can be decreased with only a small degradation in field effect mobility.

REFERENCES

Improved Output ESD Protection by Dynamic Gate Floating Design

Hun-Hsien Chang and Ming-Dou Ker

Abstract—A dynamic gate floating design is proposed to improve ESD robustness of the CMOS output buffers with small drive capability. By using this novel design, the human-body-model (machine-model) ESD failure threshold of a 2-mA CMOS output buffer has been practically improved from 1 kV (100 V) to greater than 8 kV (1500 V) in a 0.35-\(\mu\)m CMOS process.

Index Terms—ESD, ESD protection, output buffer.

I. INTRODUCTION

Electrostatic discharge (ESD) robustness of CMOS IC’s had been found to be seriously degraded by the advanced deep-submicron CMOS technologies [1]–[3]. To improve ESD robustness of the output transistors, the ESD-implant process and the silicide-blocking process had been widely used in the deep-submicron CMOS technologies [3]–[5]. Besides the advanced process modifications to improve ESD robustness of the output buffers, the symmetrical layout structure had been emphasized to realize the large-dimension output transistors by ensuring the uniform turn-on phenomenon along the multiple fingers of the output transistor [6]. To further enhance the uniform turn-on phenomenon among the multiple fingers of the output transistors, a gate coupling design had been reported to achieve uniform ESD power distribution on the large-dimension output transistors [7]–[11]. But in the practical applications, the output buffers in a cell library have different drive capability specifications, for example, 2, 4, 8, ..., 24 mA, etc. But, the cell layouts of the 2-mA output buffer, it also and Mp1. But, in the cell layout of the 2-mA output buffer, it also

In this paper, a dynamic gate floating design is proposed to improve ESD level of the output buffers with small drive capability in a 0.35-\(\mu\)m CMOS process.

II. OUTPUT ESD PROTECTION DESIGN

A. Traditional Gate Coupling Design

To enhance the turn-on uniformity of the output buffers, the poly gates of the unused NMOS (PMOS) in the output buffers are connected to VSS (VDD) through a small-dimension NMOS Mn1 (PMOS Mp1) [10], as shown in Fig. 1. The Mn1 (Mp1) cooperated with the parasitic drain-to-gate capacitance in the Mn2 (Mp2) performs the gate coupling effect to turn on the Mn2 (Mp2) during the ESD stress [9]–[11]. In the normal operating conditions, the gate of Mn2 (Mp2) is connected to VDD (VSS) through the turned-on Mp1 (Mn1) to keep the Mn2 (Mp2) off. The output drive (sink) current is provided by the Mp1 (Mn1). For an output buffer with a smaller drive capability, such as only 2mA, the device dimension of the Mn1 (Mp1) is much smaller than that of the Mn2 (Mp2). In a 0.35-\(\mu\)m CMOS cell library, a 2-mA output buffer has the device dimension (W/L) of 30/0.5 (690/0.5) for both the Mn1 and Mp1. But, in the cell layout of the 2-mA output buffer, it also has the device dimension of 450/0.5 (690/0.5) for the Mn2 and Mp2. The gate to drain contact distance in the Mn2, Mp2, Mn1, and Mp1

![Fig. 1. The output buffer with a small drive capability in a 0.35-\(\mu\)m CMOS process. The gate of the unused Mn2 (Mp2) is connected to VSS (VDD) through a small-dimension Mn1 (Mp1) to perform the traditional gate coupling effect for ESD protection.](image1)

![Fig. 2. The dynamic gate floating design to improve ESD level of the output buffers with small drive capability in a 0.35-\(\mu\)m CMOS process.](image2)