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Absorbing-state phase transitions on percolating lattices
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We study nonequilibrium phase transitions of reaction-diffusion systems defined on randomly diluted lat-
tices, focusing on the transition across the lattice percolation threshold. To develop a theory for this transition,
we combine classical percolation theory with the properties of the supercritical nonequilibrium system on a
finite-size cluster. In the case of the contact process, the interplay between geometric criticality due to perco-
lation and dynamical fluctuations of the nonequilibrium system leads to a different universality class. The
critical point is characterized by ultraslow activated dynamical scaling and accompanied by strong Griffiths
singularities. To confirm the universality of this exotic scaling scenario we also study the generalized contact
process with several �symmetric� absorbing states and we support our theory by extensive Monte Carlo
simulations.
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I. INTRODUCTION

In recent years, considerable effort has been directed to-
ward identifying and classifying phase transitions far from
thermal equilibrium. Such nonequilibrium transitions can be
found in a wide variety of problems in biology, chemistry,
and physics. Examples include population dynamics, the
spreading of epidemics, surface chemical reactions, catalysis,
granular flow, traffic jams as well as growing surfaces and
interfaces �see, e.g., �1–8��. Nonequilibrium phase transitions
are characterized by large-scale fluctuations and collective
behavior in space and time very similar to the behavior at
equilibrium critical points.

A particularly interesting situation arises when an equilib-
rium or nonequilibrium many-particle system is defined on a
randomly diluted lattice. Then, two distinct types of fluctua-
tions are combined, viz. the dynamical fluctuations of the
many-particle system and the static geometric fluctuations
due to lattice percolation �9�. In equilibrium systems, their
interplay gives rise to different universality classes for the
thermal �10–12� and quantum �13–16� phase transitions
across the lattice percolation threshold.

In this paper, we investigate the interplay between dy-
namical fluctuations and geometric criticality in nonequilib-
rium many-particle systems. We focus on a particularly well-
studied type of transitions �the so-called absorbing state
transitions� that separate active fluctuating steady states from
inactive �absorbing� states in which fluctuations cease com-
pletely. The generic universality class for absorbing state
transitions is directed percolation �DP� �17�. It is conjectured
�18,19� to be valid for all absorbing state transitions with
scalar order parameter and no extra symmetries or conserva-
tion laws. In the presence of symmetries and/or conservation
laws, other universality classes can be realized, such as the
DPn class in systems with n symmetric absorbing states �20�.

For definiteness, we consider the contact process �21�, a
prototypical system in the DP universality class. We show

that the contact process on a random site or bond diluted
lattice has two different nonequilibrium phase transitions: �i�
a generic disordered DP transition at weak dilutions �below
the lattice percolation threshold� driven by the dynamic fluc-
tuations of the contact process and �ii� the transition across
the lattice percolation threshold driven by the geometric
criticality of the lattice. The former transition has been in-
vestigated for a number of years �22–25�; it has recently
reattracted considerable attention because it is governed by
an exotic infinite-randomness fixed point �26–29�. In con-
trast, the latter transition has received much less attention.

Here, we develop a theory for the nonequilibrium transi-
tion across the lattice percolation threshold by combining
classical percolation theory with the properties of the super-
critical contact process on a finite-size cluster. We show that
the critical point is characterized by ultraslow activated �ex-
ponential� dynamical scaling and accompanied by strong
Griffiths singularities. The scaling scenario is qualitatively
similar to the generic disordered DP transition, but with dif-
ferent critical exponent values. To confirm the universality of
this exotic scenario, we also investigate the generalized con-
tact process with n �symmetric� absorbing states �20�. This is
a particularly interesting problem because the generic transi-
tion of the disordered generalized contact process does not
appear to be of infinite-randomness type �26,27�.

The paper is organized as follows. In Sec. II, we introduce
our models—the simple and generalized contact processes
on a randomly diluted lattice. We also discuss the phase dia-
grams. In Sec. III we briefly summarize the results of clas-
sical percolation theory to the extent necessary for our pur-
poses. Section IV contains the main part of the paper—the
theory of the nonequilibrium transition across the lattice per-
colation threshold. Section V is devoted to the question of
the generality of the arising scaling scenario. We conclude in
Sec. VI. A short account of part of this work has already
been published in Ref. �30�.
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II. SIMPLE AND GENERALIZED CONTACT PROCESSES
ON DILUTED LATTICES

A. Contact process

The clean contact process �21� is a prototypical system in
the DP universality class. It is defined on a d-dimensional
hypercubic lattice. �We consider d�2 since we will be inter-
ested in diluting the lattice.� Each lattice site r can be active
�infected state A� or inactive �healthy state I�. During the
time evolution of the contact process which is a continuous-
time Markovian process, each active site becomes inactive at
a rate � �“healing”� while each inactive site becomes active
at a rate �m / �2d�, where m is the number of active nearest-
neighbor sites �“infection”�. The infection rate � and the
healing rate � are external parameters. Their ratio controls
the behavior of the contact process.

For ���, healing dominates over infection, and the ab-
sorbing state without any active sites is the only steady state
of the system �inactive phase�. For sufficiently large infec-
tion rate �, there is a steady state with a nonzero density of
active sites �active phase�. These two phases are separated by
a nonequilibrium phase transition in the DP universality class
at a critical value �� /��c

0 of the ratio of the infection and
healing rates.

The basic observable in the contact process is the average
density of active sites at time t,

��t� =
1

Ld�
r

�nr�t�� , �1�

where nr�t�=1 if the site r is active at time t and nr�t�=0 if
it is inactive. L is the linear system size and �¯� denotes the
average over all realizations of the Markovian process. The
long-time limit of this density �i.e., the steady-state density�

�stat = lim
t→�

��t� �2�

is the order parameter of the nonequilibrium phase transition.

B. Generalized contact process

Following Hinrichsen �20�, we now generalize the contact
process by introducing n different inactive states Ik with k
=1, . . . ,n �n=1 corresponds to the simple contact process�.
Here, k is sometimes called the “color” label. The time evo-
lution is again a continuous-time Markovian process. The
first two rates are equivalent to those of the simple contact
process: an active site can decay into each of the inactive
states Ik with rate � /n, and a site in any of the inactive states
becomes active at a rate �m / �2d� with m as the number of
active nearest-neighbor sites. To introduce competition be-
tween the different inactive states, we define a third rate: if
two neighboring sites are in different inactive states, each can
become active with a rate �. This last rule prevents the
boundaries between domains of different inactive states from
sticking together infinitely. Instead they can separate, leaving
active sites behind.

The properties of the clean generalized contact process
have been studied in some details in the literature �20,31�. If
the boundary activation rate � vanishes, the behavior be-

comes identical to the simple contact process for all n. �This
becomes obvious by simply dropping the color label and
treating all inactive sites as identical.� For ��0, the system
becomes “more active” than the simple contact process, and
the universality class changes. In one space dimension, a
phase transition exists for n=1 �in the DP universality class�
and for n=2 �in the Z2-symmetric directed percolation �DP2�
class which coincides with the parity-conserving �PC� class
in one dimension �5��. For n�3 the system is always in the
active phase, and no phase transition exists at finite values of
�, �, and �.

The generalized contact process in higher space dimen-
sions presumably behaves in an analogous fashion: there is a
DP transition for n=1 while the properties for n�1 are dif-
ferent. For sufficiently large n, the system is always active
�32�.

C. Lattice dilution

We now introduce quenched site dilution by randomly
removing each lattice site with probability p. �Bond dilution
could be introduced analogously.� As long as the vacancy
concentration p remains below the lattice percolation thresh-
old pc, the lattice consists of an infinite connected cluster of
sites accompanied by a spectrum of finite-size clusters. In
contrast, at dilutions above pc, the lattice consists of discon-
nected finite-size clusters only.

Figure 1 schematically shows the resulting phase dia-
grams of the nonequilibrium process as a function of the
infection rate � and dilution p, keeping the healing rate �

0 Pc
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λc0
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Active

Inactive

MCP

generic

percolation

λ∗
−1

P

0 Pc
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FIG. 1. �Color online� Schematic phase diagrams for the simple
and generalized contact processes on a diluted lattice in dimensions
d�2 as a function of dilution p and inverse infection rate �−1

�healing and boundary activation rates � and � are fixed�. Case �a�
applies to systems that display a phase transition at �c

0 in the ab-
sence of dilution. There is a multicritical point �MCP� at �pc ,���
separating the generic transition from the lattice percolation transi-
tion. Case �b� is for systems that are always active in the absence of
dilution.
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and the boundary activation rate �, if any, constant. Depend-
ing on the properties of the clean undiluted system, there are
two qualitatively different cases:

�a� If the undiluted system has a phase transition at a
nonzero critical infection rate �c

0, the active phase survives
for all vacancy concentrations below the percolation thresh-
old, p	 pc. It even survives at the percolation threshold pc on
the critical percolation cluster because it is connected, infi-
nitely extended, and its fractal dimension Df is larger than
unity. The critical infection rate �c increases with increasing
dilution p to compensate for the missing neighbors, reaching
�� at pc. The active phase cannot exist for p� pc because the
lattice consists of finite-size clusters only, and the nonequi-
librium process will eventually end up in one of the absorb-
ing states on any finite-size cluster. Thus, in case �a�, our
system features two nonequilibrium phase transitions: �i� a
generic �disordered� transition for dilutions p	 pc driven by
the dynamic fluctuations of the nonequilibrium process and
�ii� the transition across the lattice percolation threshold
driven by the geometric criticality of the lattice. They are
separated by a multicritical point at �pc ,��� which was stud-
ied numerically in Ref. �33�.

�b� If the undiluted system is always active �as for the
generalized contact process with a sufficiently high number
of inactive states�, the phase diagram is simpler. The active
phase covers the entire region p
 pc for all ��0 ��� is
formally zero� while the inactive phase exists in the region
p� pc. There is no generic �disordered� nonequilibrium
phase transition, only the transition across the lattice perco-
lation threshold.

The focus of the present paper is the nonequilibrium
phase transition across the lattice percolation threshold that
exists in both cases. In order to develop a theory for this
transition, we combine classical percolation theory with the
properties of the nonequilibrium process on a finite-size clus-
ter. In Sec. III we therefore briefly summarize key results of
percolation theory.

III. CLASSICAL PERCOLATION THEORY

Consider a regular lattice in d dimensions. If each lattice
site is removed with probability p �34�, an obvious question
is whether or not the lattice is still connected in the sense that
there is a cluster of connected �nearest-neighbor� sites that
spans the entire system. This question defines the percolation
problem �see Ref. �9� for an introduction�.

In the thermodynamic limit of infinite system volume,
there is a sharp boundary between the cases of a connected
or disconnected lattice. If the vacancy concentration p stays
below the percolation threshold pc, an infinite cluster of con-
nected sites exists �with a probability of unity�. For p� pc, an
infinite cluster does not exist; instead, the lattice consists of
many disconnected finite-size clusters.

The behavior of the lattice for vacancy concentrations
close to the percolation threshold can be understood as a
�geometric� continuous phase transition or critical phenom-
enon. The order parameter is the probability P� of a site to
belong to the infinite connected percolation cluster. It is ob-
viously zero in the disconnected phase �p� pc� and nonzero

in the percolating phase �p	 pc�. Close to pc it varies as

P� � 	p − pc	�c �p 	 pc� , �3�

where �c is the order-parameter critical exponent of classical
percolation. Note that we use a subscript c to distinguish
quantities associated with the classical lattice percolation
problem from those of the nonequilibrium phase transitions
discussed later. In addition to the infinite cluster, we also
need to characterize the finite clusters on both sides of the
transition. Their typical size, the correlation, or connected-
ness length �c diverges as

�c � 	p − pc	−
c �4�

with 
c as the correlation length exponent. The average mass
Sc �number of sites� of a finite cluster diverges with the sus-
ceptibility exponent �c according to

Sc � 	p − pc	−�c. �5�

The complete information about the percolation critical
behavior is contained in the cluster size distribution ns, i.e.,
the number of clusters with s sites excluding the infinite
cluster �normalized by the total number of lattice sites�.
Close to the percolation threshold, it obeys the scaling form

ns��� = s−�cf��s�c� . �6�

Here �= p− pc and �c and �c are critical exponents. The scal-
ing function f�x� is analytic for small x and has a single
maximum at some xmax�0. For large 	x	, it drops off rapidly
as

f�x� � exp�− B1x1/�c� �x � 0� , �7�

f�x� � exp�− �B2x1/�c�1−1/d� �x 	 0� , �8�

where B1 and B2 are constants of order unity. All classical
percolation exponents are determined by �c and �c including
the correlation lengths exponent 
c= ��c−1� / �d�c�, the order-
parameter exponent �c= ��c−2� /�c, and the susceptibility
exponent �c= �3−�c� /�c.

Right at the percolation threshold, the cluster size distri-
bution does not contain a characteristic scale. The structure
of the critical percolation cluster is thus fractal with the frac-
tal dimension given by Df =d / ��c−1�.

IV. NONEQUILIBRIUM TRANSITION ACROSS THE
LATTICE PERCOLATION THRESHOLD

A. Single-cluster dynamics

To develop a theory of the nonequilibrium phase transi-
tion across the lattice percolation threshold, we first study the
nonequilibrium process on a single connected finite-size
cluster of s sites. For definiteness, this section focuses on the
simple contact process. The generalized contact process will
be considered in Sec. V.

The crucial observation is that on the percolation transi-
tion line �for �����, the contact process is supercritical, i.e.,
the cluster is locally in the active phase. The time evolution
of such a cluster, starting from a fully active lattice, therefore
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proceeds in two stages: initially, the density �s of active sites
decays rapidly toward a metastable state �which corresponds
to the steady state of the equivalent infinite system� with a
nonzero density of active sites and islands of the inactive
phase of linear size �s

c �see Fig. 2�. This metastable state can
then decay into the inactive �absorbing� state only via a rare
collective fluctuation involving all sites of the cluster. We
thus expect the long-time decay of the density to be of ex-
ponential form �suppressing subleading pre-exponential fac-
tors�,

�s�t� � exp�− t/ts�s�� �9�

with a long lifetime ts that increases exponentially with the
cluster size s

ts�s� = t0 exp�A���s� �10�

for sufficiently large s. Here, t0 is some microscopic time
scale.

The further the cluster is in the active phase, the faster the
lifetime increases with s. This means that the prefactor A���
which plays the role of an inverse correlation volume van-
ishes at the multicritical value �� and monotonically in-
creases with increasing �. Close to the multicritical point, the
behavior of A��� can be inferred from scaling. Since A���
has the dimension of an inverse volume, it varies as

A��� � �� − ���
�Df , �11�

where 
� is the correlation length exponent of the multicriti-
cal point and Df is the �fractal� space dimensionality of the
underlying cluster.

Note that Eq. �10� establishes an exponential relation be-
tween length and time scales at the transition. Because the
number of sites s of a percolation cluster is related to its
linear size Rs via s�Rs

Df, Eq. �10� implies

ln ts � Rs
Df . �12�

Thus, the dynamical scaling is activated rather than power
law with the tunneling exponent identical to the fractal di-
mension of the critical percolation cluster, �=Df.

To confirm the above phenomenological arguments, we
have performed extensive Monte Carlo simulations of the
contact process on finite-size clusters using clean one-

dimensional and two-dimensional systems as well as diluted
lattices. Our simulation method is based on the algorithm by
Dickman �35� and described in detail in Refs. �28,29�.

A characteristic set of results is shown in Fig. 3. It shows
the time evolution of the contact process on several one-
dimensional clusters of different size s, starting from a fully
active lattice. The infection rate �=3.8 �we set �=1� puts the
clusters �locally� in the ordered phase, i.e., they are super-
critical, since the critical value in one dimension is �c
=3.298. All data are averages over 105 independent trials.
The double-logarithmic plot of density �s vs time t in Fig.
3�a� clearly shows the two-stage time evolution consisting of
a rapid initial decay �independent of cluster size� toward a
metastable state followed by a long-time decay toward the
absorbing state which becomes slower with increasing clus-
ter size. Replotting the data in logarithmic-linear form in Fig.
3�b� confirms that the long-time decay is exponential, as pre-
dicted in Eq. �9�.

The lifetime ts of the contact process on the cluster can be
determined by fitting the asymptotic part of the �s�t� curve to
Eq. �9�. Figure 4 shows the lifetime as a function of cluster
size s for four different values of the infection rate �. Clearly,
for sufficiently large clusters, the lifetime depends exponen-
tially on the cluster size, as predicted in Eq. �10�. �The data
for �=3.4 which is very close to the bulk critical point of
�c=3.298 have not fully reached the asymptotic regime as

I
II

I

A

ξs
c

FIG. 2. �Color online� Schematic of the metastable state of the
supercritical contact process on a single percolation cluster. A and I
denote active and inactive sites and �s

c is the connected correlation
length of the density fluctuations on the cluster.
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FIG. 3. �Color online� Contact process on one-dimensional clus-
ters of size s, starting from a fully active lattice at �=3.8,�=1
which is in the active phase. �a� Double-logarithmic plot of density
vs time showing the two-stage time evolution via a metastable state.
�b� Logarithmic-linear plot demonstrating that the long-time decay
is exponential. All data are averages over 105 independent runs.
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can be seen from the remaining slight curvature of the plot.�
By fitting the large-s behavior of the lifetime curves to the
exponential law �10�, we obtain an estimate of the inverse
correlation volume A. The inset of Fig. 4 shows this correla-
tion volume as a function of the distance from the bulk criti-
cal point. In accordance with Eq. �11� it behaves as a power
law. The exponent value of approximately 0.95 is in reason-
able agreement with the prediction 
=1.097 for our one-
dimensional clusters.

We have performed analogous simulations for various sets
of two-dimensional clusters as well as finite-size diluted lat-
tices. In all cases, the Monte Carlo results confirm the phe-
nomenological theory summarized in Eqs. �9�–�11�.

B. Steady-state density and density decay

We now consider the full problem—the contact process
on a diluted lattice close to the percolation threshold. To
obtain observables of the entire system, we must sum over
all percolation clusters.

Let us start by analyzing static quantities such as the
steady-state density �st of active sites �the order parameter of
the nonequilibrium transition� and the spatial correlation
length ��. Finite-size percolation clusters do not contribute
to the steady-state density because the contact process even-
tually decays into the absorbing inactive state on any finite-
size cluster. A steady-state density can thus exist only on the
infinite percolation cluster for p	 pc. For ����, the infinite
cluster is supercritical, i.e., a finite fraction of its sites is
active. Thus, the total steady-state density is proportional to
the number of sites in the infinite cluster,

�st � P��p� � 
	p − pc	�c �p 	 pc� ,

0 �p � pc� .
� �13�

Consequently, the order-parameter exponent � of the non-
equilibrium transition is identical to the corresponding expo-
nent �c of the lattice percolation problem.

The �average� spatial correlation length �� of the non-
equilibrium process can be found using a similar argument.

On the one hand, the spatial correlations of the contact pro-
cess cannot extend beyond the connectedness length �c of the
underlying diluted lattice because different percolation clus-
ters are completely decoupled. This implies ����c. On the
other hand, for ����, all sites on the same percolation clus-
ter are strongly correlated in space, implying ����c. We
therefore conclude that

�� � �c �14�

and the correlation length exponent 
� is also identical to its
lattice percolation counterpart 
c.

We now turn to the dynamics of the nonequilibrium tran-
sition across the percolation threshold. In order to find the
time evolution of the total density of active sites �starting
from a completely active lattice�, we sum over all percola-
tion clusters by combining the cluster size distribution Eq.
�6� with the single-cluster time evolution �9�. The total den-
sity is thus given by

��t,�� =
 ds sns����s�t� � 
 ds sns���exp�− t/ts�s�� .

�15�

In the following, we evaluate this integral at the transition as
well as in the active and inactive phases.

Right at the percolation threshold, the scaling function in
the cluster size distribution �6� is a constant, f�0�, and Eq.
�15� simplifies to

��t,0� � 
 ds s1−�c exp�− �t/t0eAs�� . �16�

To estimate this integral, we note that only sufficiently large
clusters, with a minimum size of smin�t�=A−1 ln�t / t0�, con-
tribute to the total density at time t,

��t,0� � 

smin

�

ds s1−�c � smin
2−�c. �17�

The leading long-time dependence of the total density right
at the percolation threshold thus takes the unusual logarith-
mic form

��t,0� � �ln�t/t0��−�̄, �18�

again reflecting the activated dynamical scaling, with the

critical exponent given by �̄=�c−2=�c / �
cDf�.
In the disconnected inactive phase �p� pc� we need to use

expression �7� for the scaling function of the cluster size
distribution. The resulting integral for the time evolution of
the density reads

��t,�� � 
 ds s1−�c exp�− B1s�1/�c − �t/t0eAs�� . �19�

For long times, the leading behavior of the integral can be
calculated using the saddle-point method. Minimizing the
exponent of the integrand shows that the main contribution at
time t to the integral Eq. �19� comes from clusters of size
s0=−A−1 ln�B1�1/�ct0 / �At��. Inserting this into the integrand
results in a power-law density decay

0 50 100 150
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t s
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0.1 0.2 0.3 0.5
λ−λc

10

20
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A
-1

FIG. 4. �Color online� Lifetime ts as a function of cluster size s
for different values of the infection rate �. The other parameters are
as in Fig. 3. The dashed lines are fits of the large-s behavior to the
exponential dependence �10�. Inset: correlation volume A−1 as a
function of the distance from bulk criticality. The dashed line is a
power-law fit.
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��t,�� � �t/t0�−d/z� �p � pc� . �20�

The nonuniversal exponent z� is given by z�
= �Ad /B1��−1/�c ���

Df, i.e., it diverges at the critical point p
= pc.

In the percolating active phase �p	 pc�, the infinite per-
colation cluster contributes a nonzero steady-state density
�st��� given by Eq. �13�. However, the long-time approach
of the density toward this value is determined by the slow
decay of the metastable states of large finite-size percolation
clusters. To estimate their contribution, we must use expres-
sion �8� for the scaling function of the cluster size distribu-
tion. The resulting integral now reads

��t,�� − �st��� � 
 ds s1−�c exp�− �B2s	�	1/�c�1−1/d

− �t/t0eAs�� . �21�

We again apply the saddle-point method to find the leading
low-time behavior of this integral. Minimizing the exponent
shows the main contribution coming from clusters of size
s0=−A−1 ln�B2	�	1/�c�d−1� / �Atd��. By inserting this into the
integrand, we find a nonexponential density decay of the
form

��t,�� − �st��� � e−��d/z��ln�t/t0��1−1/d
�p 	 pc� . �22�

Here, z�= �Ad /B2�	�	−1/�c ���
Df is another nonuniversal expo-

nent which diverges at the critical point.
The slow nonexponential relaxation of the total density on

both sides of the actual transition as given in Eqs. �20� and
�22� is characteristic of a Griffiths phase �36� in the contact
process �37�. It is brought about by the competition between
the exponentially decreasing probability for finding a large
percolation cluster off criticality and the exponentially in-
creasing lifetime of such a cluster. Note that time t and spa-
tial correlation length �� enter the off-critical decay laws
�20� and �22� in terms of the combination ln�t / t0� /��

Df again
reflecting the activated character of the dynamical scaling.

C. Spreading from a single seed

After having discussed the time evolution of the density
starting from a completely infected lattice, we now consider
the survival probability Ps�t� for runs starting from a single
random seed site. To estimate Ps�t�, we note that the prob-
ability of a random seed site to belong to a cluster of size s is
given by sns���. The activity of the contact process is con-
fined to this seed cluster. Following the arguments leading to
Eq. �9�, the probability that this cluster survives is propor-
tional to exp�−t / ts�. The average survival probability at time
t can thus be written as a sum over all possible seed clusters,

Ps�t,�� � 
 ds sns���exp�− t/ts�s�� . �23�

This is exactly the same integral as the one governing the
density decay �15�. We conclude that the time dependence of
the survival probability for runs starting from a single seed is
identical to the time evolution of the density when starting
from a fully infected lattice, as is expected for the contact

process under very general conditions �see, e.g., Ref. �5��.
To determine the �average� total number N�t� of active

sites in a cloud spreading from a single seed, we observe that
a supercritical cloud initially grows ballistically. This means
that its radius grows linearly with time and the number of
active sites follows a power law. This ballistic growth stops
when the number of active sites is on the order of the cluster
size s. After that, the number of active sites stays approxi-
mately constant. The number Ns�t� of active sites on a per-
colation cluster of size s is thus given by

Ns�t� � 
�t/t0�Df �t 	 ti�s�� ,

s �t � ti�s�� ,
� �24�

where ti�s��Rs�s�� t0s1/Df is the saturation time of this clus-
ter. Note that Ns decays to zero only after the much longer
cluster lifetime ts�s�= t0 exp�A���s� given in Eq. �10�.

We now average over all possible positions of the seed
site as in Eq. �23�. This yields

N�t,�� � 

smin

�

ds sns���Ns�t� �25�

with smin�A−1 ln�t / t0�. At criticality, this integral is easily
evaluated, giving

N�t,0� � tDf�3−�c� = t�c/
c. �26�

The lower bound of the integral �i.e., the logarithmically
slow long-time decay of the clusters� produces a subleading
correction only. Consequently, we arrive at the somewhat
surprising conclusion that the initial spreading follows a
power law and is thus much faster than the long-time density
decay. In contrast, at the infinite-randomness critical point
governing the generic �p	 pc� transition, both the initial
spreading and the long-time decay follow logarithmic laws
�26–29�. Note that a similar situation occurs at the percola-
tion quantum phase transition in the diluted transverse-field
Ising model �13� where the temperature dependence of the
correlation length does not follow the naively expected loga-
rithmic law.

D. External source field

In this section we discuss the effects of spontaneous ac-
tivity creation on our nonequilibrium phase transition. Spe-
cifically, in addition to healing and infection, we now con-
sider a third process by which an inactive site can
spontaneously turn into an active site at rate h. This rate
plays the role of an external “source field” conjugate to the
order parameter.

To find the steady-state density in the presence of such a
source field, we first consider a single percolation cluster. As
before, we are interested in the supercritical regime ����.
At any given time t, a cluster of size s will be active �on
average�, if at least one of the s sites has spontaneously be-
come active within one lifetime ts�s�= t0eAs before t, i.e., in
the interval �t− ts�s� , t�. For a small external field h, the av-
erage number of active sites created on a cluster of size s is
Ms�h�=hsts�s�=hst0eAs. This linear-response expression is
valid as long as Ms�s. The probability ws�h� for a cluster of
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size s to be active in the steady state is thus given by

ws�h� � 
Ms�h� �Ms�h� 	 1� ,

1 �Ms�h� � 1� .
� �27�

Turning to the full lattice, the total steady-state density is
obtained by summing over all clusters,

�st�h,�� � 
 ds sns���min�1,Ms�h�� . �28�

This integral can be evaluated along the same lines as the
corresponding integral �15� for the time evolution of the
zero-field density. For small fields h, we obtain

�st�h,0� � �ln�h0/h��−�̄ �p = pc� , �29�

�st�h,�� � �h/h0�d/z� �p � pc� , �30�

��st�h,�� � e��d/z��ln�h/h0��1−1/d
�p 	 pc� , �31�

where ��st�h ,��=�st�h ,��−�st�0,�� is the excess density
due to the field in the active phase and h0=1 / t0. At criticality,
p= pc, the relation between density �st and field h is logarith-
mic because the field represents a rate �inverse time� and the
dynamical scaling is activated. At off criticality, we find
strong Griffiths singularities analogous to those in the time
dependence of the density. The exponents z� and z� take the
same values as calculated after Eqs. �20� and �22�, respec-
tively.

E. Scaling theory

In Secs. IV B and IV D, we have determined the critical
behavior of the density of active sites by explicitly averaging
the single-cluster dynamics over all percolation clusters. The
same results can also be obtained from writing down a gen-
eral scaling theory of the density for the case of activated
dynamical scaling �28,29�.

According to Eq. �13�, in the active phase, the density is
proportional to the number of sites in the infinite percolation
cluster. Its scale dimension must therefore be identical to the
scale dimension of P� which is �c /
c. Time must enter the
theory via the scaling combination ln�t / t0�b� with the tun-
neling exponent given by �=Df and b as an arbitrary length
scale factor. This scaling combination reflects the activated
dynamical scaling, i.e., the exponential relation �12� between
length and time scales. Finally, the source field h, being a
rate, scales like inverse time. This leads to the following
scaling theory of the density:

���, ln�t/t0�, ln�h0/h�� = b�c/
c���b−1/
c, ln�t/t0�b�, ln�h0/h�b�� .

�32�

This scaling theory is compatible with all our explicit results
which can be rederived by setting the arbitrary scale factor b
to the appropriate values.

V. GENERALITY OF THE ACTIVATED
SCALING SCENARIO

In Sec. IV, we have developed a theory for the nonequi-
librium phase transition of the simple contact process across

the lattice percolation threshold and found it to be character-
ized by unconventional activated dynamical scaling. In the
present section, we investigate how general this exotic be-
havior is for absorbing state transitions by considering the
generalized contact process with several absorbing states.

This is a particularly interesting question because the ge-
neric transitions �p	 pc� of the diluted simple and general-
ized contact processes appear to behave differently. The ge-
neric transition in the simple contact process has been shown
to be of infinite-randomness type with activated dynamical
scaling using both a strong-disorder renormalization group
�26,27� and Monte Carlo simulations �28,29�. In contrast, the
strong-disorder renormalization-group treatment of the disor-
dered generalized contact process �27� suggests more con-
ventional behavior, even though the ultimate fate of the tran-
sition could not be determined.

To address the same question for our transition across the
lattice percolation threshold, we note that any difference be-
tween the simple and the generalized contact processes must
stem from the single-cluster dynamics because the underly-
ing lattice is identical. In the following we therefore first give
heuristic arguments for the single-cluster dynamics of the
supercritical generalized contact process and then verify
them by Monte Carlo simulations.

If the percolation cluster is locally in the active phase
������, the density time evolution, starting from a fully
active lattice, proceeds in two stages analogously to the
simple contact process. There is a rapid initial decay to a
metastable state with a nonzero density of active sites and
finite-size islands of each of the inactive phases �see Fig. 5�.
For this metastable state to decay into one of the n absorbing
configurations, all sites must go into the same inactive state
which requires a rare large density fluctuation. Let us assume
for definiteness that the decay is into the I1 state. The main
difference to the simple contact process considered in Sec.
IV A is that sites that are in inactive states I2 , . . . , In cannot
directly decay into I1. This means that each of the inactive
islands in states I2 , . . . , In first needs to be “eaten” by the
active regions before the entire cluster can decay into the I1
state. This can only happen via infection from the boundary
of the inactive island and is thus a slow process. However,
since the characteristic size of the inactive islands in the
metastable state is finite �it is given by the connected density

I2
I2I1

I1

A

ξcs

FIG. 5. �Color online� Schematic of the metastable state of the
supercritical generalized contact process with two inactive states on
a single percolation cluster. A denotes the active state and I1 and I2

are the inactive states. �s
c is the connected correlation length of the

density fluctuations on the cluster.
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correlation length �s
c on the cluster�, this process happens

with a nonzero rate that is independent of the size s of the
underlying percolation cluster �for sufficiently large s�.

The decay of the metastable state into one of the absorb-
ing states is therefore brought about by the rare collective
decay of a large number of independent correlation volumes
just as in the simple contact process. As a result, the lifetime
ts�s� depends exponentially on the number of involved cor-
relation volumes, i.e., it depends exponentially on the cluster
size s. We thus find that the long-time density decay of the
generalized contact process on a single large percolation
cluster is governed by the same Eqs. �9� and �10� as the
decay of the simple contact process.

To verify these phenomenological arguments, we have
performed large-scale Monte Carlo simulations of the gener-
alized contact process with two and three absorbing states on
clean and disordered one-dimensional and two-dimensional
lattices. In all cases, we have first performed bulk simula-
tions �spreading from a single seed� to find the bulk critical
point. An example is shown in Fig. 6; details of the bulk

critical behavior will be reported elsewhere.
After having determined the critical point, if any, we have

selected several parameter sets in the bulk active phase and
studied the long-time density decay of the generalized con-
tact process on finite-size clusters. As expected, the decay
proceeds via the two stages discussed above. As in Sec.
IV A, we extract the lifetime ts from the slow exponential
long-time part of the decay. Two characteristic sets of results
are shown in Fig. 7. The figure confirms that the lifetime of
the generalized contact process on a finite-size cluster de-
pends exponentially on the number of sites in the cluster, as
given in Eq. �10�. We have obtained analogous results for all
cases investigated, verifying the phenomenological theory
given above.

Because the long-time dynamics of the generalized con-
tact process on a single supercritical cluster follows the same
behavior �9� and �10� as that of the simple contact process,
we conclude that its nonequilibrium transition across the per-
colation threshold will also be governed by the theory devel-
oped in Sec. IV. In other words, the lattice percolation tran-
sitions of the simple and generalized contact processes
belong to the same universality class, irrespective of the
number n of absorbing states.

VI. CONCLUSIONS

In this final section of the paper, we first summarize our
results, discuss their generality, and relate them to the behav-
ior of certain quantum phase transitions on diluted lattices.
We then compare the recently found infinite-randomness
critical point at the generic transition �p	 pc� to the behavior
at our lattice percolation transition. Finally, we relate our
findings to a general classification of phase transitions with
quenched spatial disorder �38�.

To summarize, we have investigated absorbing state phase
transitions on randomly diluted lattices, taking the simple
and generalized contact processes as examples. We have fo-
cused on the nonequilibrium phase transition across the lat-
tice percolation threshold and shown that it can be under-
stood by combining the time evolution of the supercritical
nonequilibrium process on a finite-size cluster with results
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FIG. 6. �Color online� Bulk phase transition of the generalized
contact process with two absorbing states in d=1 measured via
spreading from a single seed: number N of active sites vs time t for
different healing rates �. The infection and boundary activation
rates are fixed, �=�=1, and the data are averages over 106 runs.
The critical point appears to be close to �=0.628 in agreement with
�20�.
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FIG. 7. �Color online� Lifetime ts as a function of cluster size s for the generalized contact process with two inactive states at different
values of the healing rate �. The infection and boundary activation rates are fixed, �=�=1, and the data are averages over 106 runs. �a� d=1
where the bulk system has a transition �see Fig. 6�. �b� d=2, where we do not find a bulk transition because the system is always active �32�.
The dashed lines are fits of the large-s behaviors to the exponential law �10�.
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from classical lattice percolation theory. The interplay be-
tween geometric criticality and dynamic fluctuations at this
transition leads to a different universality class. It is charac-
terized by ultraslow activated �i.e., exponential� rather than
power-law dynamical scaling and accompanied by a nonex-
ponential decay in the Griffiths regions. All critical expo-
nents of the nonequilibrium phase transition can be ex-
pressed in terms of the classical lattice percolation
exponents. Their values are known exactly in two space di-
mensions and with good numerical accuracy in three space
dimensions; they are summarized in Table I. Thus, our tran-
sition in d=2 provides one of the few examples of a non-
equilibrium phase transition with exactly known critical ex-
ponents.

The logarithmically slow dynamics �18� and �29� at criti-

cality together with the small value of the exponent �̄ make a
numerical verification of our theory by simulations of the full
diluted lattice a very costly proposition. The results of recent
Monte Carlo simulations in two dimensions �29� at p= pc are
compatible with our theory but not yet sufficient to be con-
sidered as a quantitative verification. This remains a task for
the future.

The unconventional critical behavior of our nonequilib-
rium phase transition at p= pc is the direct result of combin-
ing the power-law spectrum �6� of cluster sizes with the ex-
ponential relation �12� between length and time scales. We
therefore expect other equilibrium or nonequilibrium sys-
tems that share these two characteristics to display similar
critical behavior at the lattice percolation transition. One pro-
totypical example is the transverse-field Ising model on a
diluted lattice. In this system, the quantum-mechanical en-
ergy gap �which represents an inverse time� of a cluster de-
creases exponentially with the cluster size. Consequently, the
critical behavior of the diluted transverse-field Ising model
across the lattice percolation threshold is very similar to the
one found in this paper �13�. Other candidates are magnetic
quantum phase transitions in metallic systems or certain
superconductor-metal quantum phase transitions �39–42�,
even though a pure percolation scenario may be hard to re-
alize in metallic systems.

Our work has focused on the nonequilibrium phase tran-
sition across the lattice percolation threshold. It is instructive
to compare its critical behavior to that of the generic transi-
tion occurring for p	 pc �see Fig. 1�. Hooyberghs et al.
�26,27� applied a strong-disorder renormalization group to
the one-dimensional disordered contact process. They found

an exotic infinite-randomness critical point in the universal-
ity class of the random-transverse-field Ising model �which
likely governs the transition for any disorder strength �43��.
The same analogy is expected to hold in two space dimen-
sions. Recently, these predictions were confirmed by large-
scale Monte Carlo simulations �28,29�. Our nonequilibrium
transition across the lattice percolation threshold shares some
characteristics with these infinite-randomness critical points,
in particular, the activated dynamical scaling which leads to
a logarithmically slow density decay at criticality.

However, the generic and percolation transitions are in
different universality classes with different critical exponent
values. Moreover, the initial spreading from a single seed is
qualitatively different �logarithmically slow at the generic
infinite-randomness critical point but of power-law type at
our percolation transition�. Finally, at the percolation transi-
tion the simple and generalized contact processes are in the
same universality class while this does not seem to be the
case for the generic transition �27�.

The results of this paper are in agreement with a recent
general classification of phase transitions with quenched spa-
tial disorder and short-range interactions �38,39�. It is based
on the effective dimensionality deff of the droplets or clus-
ters. Three classes need to be distinguished: �a� If the clusters
are below the lower critical dimension of the problem, deff
	dc

−, the critical behavior is conventional �power-law scal-
ing and exponentially weak Griffiths effects�. This is the case
for most classical equilibrium transitions. �b� If deff=dc

−, the
dynamical scaling is activated and accompanied by strong
Griffiths effects. This case is realized at the nonequilibrium
transition considered here as well as the generic transition of
the disordered contact process. It also applies to various
quantum phase transitions �13,40,44�. �c� If deff�dc

−, a single
supercritical cluster can undergo the phase transition inde-
pendently of the bulk system. This leads to the smearing of
the global phase transition; it occurs, e.g., in dissipative
quantum magnets �45,46� or in the contact process with ex-
tended defects �47�.

In conclusion, our work demonstrates that absorbing state
transitions on percolating lattices display unusual behavior.
Interestingly, experimental verifications of the theoretically
predicted critical behavior at �clean� absorbing state transi-
tions are extremely rare �48�. For instance, to the best of our
knowledge, the only complete verification of directed perco-
lation scaling was found very recently in the transition be-
tween two turbulent states in a liquid crystal �49�. Our theory
suggests that unconventional disorder effects may be respon-
sible for the surprising absence of directed percolation scal-
ing in at least some of the experiments.
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TABLE I. Critical exponents of the nonequilibrium phase tran-
sition across the percolation threshold in two and three space
dimensions.

Exponent d=2 d=3

�=�c 5/36 0.417


=
c 4/3 0.875

�=Df =d−�c /
c 91/48 2.523

�̄=�c / �
cDf� 5/91 0.188
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