
Missouri University of Science and Technology
Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

1-1-1997

High-Order Object Model Based Software
Analysis
Xiaoqing Frank Liu
Missouri University of Science and Technology, fliu@mst.edu

Hungwen Lin

Follow this and additional works at: http://scholarsmine.mst.edu/comsci_facwork

Part of the Computer Sciences Commons

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer
Science Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law.
Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

Recommended Citation
X. F. Liu and H. Lin, "High-Order Object Model Based Software Analysis," Proceedings of the 21st Annual International Computer
Software and Applications Conference, 1997, Institute of Electrical and Electronics Engineers (IEEE), Jan 1997.
The definitive version is available at https://doi.org/10.1109/CMPSAC.1997.624800

http://www.mst.edu/?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.mst.edu/?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CMPSAC.1997.624800
mailto:scholarsmine@mst.edu

High-order Object Model Based Software Analysis

Xiaoqing Frank Liu and Hungwen Lin

Department of Computer Science
University of Missouri
Rolla, Missouri 65409

Abstract
The integration of object-oriented modeling and

structured analysis (SA) for developing a well-
structured object-oriented software systems is a chal-
lenge f o r requirements analysts and software design-
ers. Some of the existing object-oriented modeling
techniques adopt approaches that are very different
f rom SA, and others have clumsily stayed with SA af-
ter a f ew modifications. Our High-order Object Model-
ing Technique (HOOMT) , however, attempts to strike
a mean between both extremes while at the same time
provides an effective modeling method. H O O M T con-
sists of two models, the High-order Object Model and
the Object Information Flow Model. By using familiar
divide-and-conquer concept and functional decomposi-
tion, our approach also ensures a less stressful mi-
gration of SA analysts to object-oriented platforms.
This paper introduces H O O M T , its concepts, and no-
tations.

1 Introduction
1.1 Background

One of interesting and important issues in object-
oriented analysis (OOA) and design is how to identify
structure of an object model and tightly integrate it
with structured analysis technique. Objects are the
basic conceptual units in the object-oriented (00)
analysis. But simple objects and their relationships
can be organized and encapsulated into a high-order
object which may be complex.

Many of today’s object-oriented analyses adopt
bottom-up approach by identifying objects first and
overall system structures later. As one can see, if OOA
is to proceed in a straight bottom-up fashion, 00 soft-
ware engineers will face the formidable task of uncov-
ering structures within a network of objects linked by
complex communications and relationships. On the
other hand, SA does not usually suffer from such weak-
ness since the system structure is carefully developed
along the way as the processes and data flows are an-

alyzed and decomposed in a top-down fashion.
To arrive at a more structured system in a system-

atic manner, OOA can borrow the idea of top-down
approach from SA. Not only will the resulting system
be structured by integrating SA and OOA, the migra-
tion to object-orientation will also become smoother
for software engineers who are used to SA. Several
studies and papers have concluded that integration of
the two methods are possible and desirable. In his pa-
per, Ward shows that “there is no fundamental opposi-
tion between real-time structured analysis/structured
design and object-oriented design” [9]. Others have
found from their experiences or surveys that struc-
tured analysis and object-oriented analysis have high
degrees of compatibilities [6, 81.
1.2 Review of Relevant Object-oriented

Several approaches such as Coad/Yourdon’s OOA,
Hierarchical Object-oriented Design (HOOD), Object-
Oriented Software Development Method (OOSD), and
a Semantically Rich Method of Object-oriented Anal-
ysis (SOMA) have been developed to identify struc-
ture of an object model. However, these approaches
do not support the structured analysis of functional
requirements represented by methods of objects.

OOA introduced by Coad/Yourdon represents the
backbone of today’s OOA. It has complete descrip-
tions of objects, attributes, and methods. In addition,
this OOA defines the concept of ‘subject.’ A subject
is “a mechanism for guiding a reader through a large,
complex model”[l]. In other words, a subject helps
grouping ‘related’ object classes together by creating
an artificial boundary. This is Coad/Yourdon’s way of
managing visual complexity of the system. However,
a subject is not an object, it does not encapsulate ob-
jects and their relationships. Also, Coad/Yourdon’s
object-oriented analysis does not incorporate SA con-
cept or notations.

OOSD [2] and HOOD as described by Graham in
his book [4] allow you to decompose the top-level ob-

Modeling Techniques

228
0730-3157/97 $10.00 0 1997 IEEE

ject into low-level objects and describe information
flows between objects. However, they do not have
mechanisms for analysis of functional requirements
represented by methods of objects. In addition, these
methods do not support inheritance.

SOMA [4], developed by Graham, adopts many
notations and ideas from previous models especially
Coad/Yourdon’s OOA. Its use of the ‘layer’ concept is
very important. In this method, the layer provides an-
other more concrete and higher abstraction level that
does what Coad/Yourdon’s subject does but more.
Layer can be thought of as an object.

In his paper, Graham compares SOMA’S layer to
Coad/Yourdon’s subject, “identifying subject areas is
a top-down process aimed at breaking the problem
up into manageable chunks. This is useful but the
‘subjects’ are not objects and have no formal status
or semantics within the model”[3]. The layer exists
at the top of a composition structure and each of its
methods must be implemented by or linked to its com-
ponent objects’ methods. Being just at the top of a
composition structure, a layer is essentially an abrtifi-
cia1 “object wrapper” that introduces no new methods
of its own.

On the other hand, Rumbaugh’s Object Model-
ing Technique (OMT) uses models and diagrams that
greatly resemble those found in structured analysis.
However, OMT does not have high-level object and its
module only serves as “a logical construct for group-
ing classes, associations or view of a situation.” Fur-
ther, “the boundaries of a module are somewhat arbi-
trary and subject to judgment.” Like subjects, niod-
ules help partition and organize a complex system, but
modules are not objects [7].

1.3 Our Approach
Our object-oriented analysis, formally called High-

arder Object Modeling Technique (HOOMT), consists
(Jf two models, the High-Order Object Model (HOOM)
,md the Object Information Flow Model (OIFM).
.NOOM has a Context Object Diagram (COD), a set
of High-order Object Diagrams (HOOD), and a set
of Primitive Object Diagrams (POD). On the other
hand, OIFM comprises a set of High-order Informa-
tion Flow Diagrams (HOIFD) and a set of Low-order
Information Flow Diagrams (LOIFD).

Object Information Flow Model and High-order
Object Model work hand in hand to obtain object di-
agrams and object information flow diagrams for an
interested system. Because both models are hierarchi-
cal and structural in nature, the resulting structure of
the system is more organized and manageable than the
traditional OOA. HOOMT approach gives analyst:; a

Context Ob,jrct Dingram : Personal Computer

Figure 1: Context Object Diagram for “Personal
Computer”

systematic way for decomposing complex systems top-
down for analysis.

The next section will detail the semantics and no-
tations used for each model. We will also discuss the
methodology for constructing both models.

2 HOOMT
2.1 High-order Object Model (HOOM)

High-order Object Model is built hierarchically by
first deriving a Context Object Diagram showing the
interested system as a high-order object interacting
with its surroundings. Subsequent analysis involves
decomposing a high-order object to simpler compo-
nent objects. The process of decomposition continues
until only primitive objects remain. Before further
discussion, we now define a few concepts used in this
model.

A high-order object (HOO) is an object that can be
decomposed to low-order component objects. A com-
ponent object can either be another high-order object
or a primitive object (PO). If a component object is
primitive, then it means this object is simple and re-
quires no further decomposition in the analyst’s mind.
In addition to encapsulating methods and attributes,
high-order objects in HOOM encapsulate other ob-
jects and the relationships among them.

To better illustrate HOOM, a simple example of a
personal computer is shown in Figure 1. As a high-
order object, “Personal Computer” interacts with ex-
ternal objects “Users,” “Printer,” and “Computer
Network.” Notice that “Personal Computer” is sym-
bolized by a rounded rectangle with two attaching
rectangular boxes that represent attributes and meth-
ods. On the other hand, external objects are symbol-
ized by simple rounded rectangles. The lines running
between objects are static relationships between these
objects. Some of these static relationships such as the
“Network Connection” can be complex and therefore

229

HOO Diagram U : Personal Computer

I.IRE*II
I W”d. I %I”-.

H.. P ’

Figure 2: HOO Diagram for “Personal Com-
put er”

PO Diagram 02 : Mi,usr

1. Cdcrr
2. Cw”1ion T y p
3. Weight
4. Input Melhcd
S. Dimensitin

M1. Move-X-Unib
M2. Move-Y-Vnits
M3. Click_Lrlt_Butlon
M4. ClickRightButton

Figure 3:
“Mouse”

Primitive Object Diagram for

considered by the analyst as another high-order ob-
ject.

“Personal Computer” is subsequently decomposed
to six component objects in the High-order Object Di-
agram of Figure 2 . A High-order Object Diagram has
four major areas as indicated in Figure 2 . In Area
1, the title “HOO Diagram 0 : Personal Computer”
indicates that this diagram is a High-order Object Di-
agram for the high-order object “Personal Computer”
with the object label ‘00.’ The second and the third
areas list the attributes and methods. Finally, Area 4
displays component objects of “Personal Computer”
and their relationships. Note that the object “Oth-
erInput Interface” strictly includes only input devices
that are not part of the user interface, for example, a
temperature data-acquisition card.

In addition to encapsulating component ob-
jects] “Personal Computer” encapsulates relationships
among component objects. For example, in “HOO
Diagram 0” the specialization relationship between
“UserInput Interface,” “Mouse,” and “Keyboard’ ob-
jects is represented by an “AKO” (A-Kind-Of Rela-
tionship) symbol.

Primitive objects are represented by simple rect-
angles with labels written in them. In “BOO Dia-

gram 0,” “Mouse” and “Keyboard” are primitive ob-
jects. Descriptions of primitive objects are detailed in
Primitive Object Diagrams. Figure 3 shows the POD
for “Mouse.” Unlike a high-order object, a primitive
object has no component objects. Its attributes and
methods are listed in the Area 2 and Area 3 respec-
tively. At this level, three component objects in Figure
2 are still at high-order, and decomposition of each will
be required for analysis.

Methods of a high-order object may be imple-
mented by one or more methods from its component
objects. For example, the method “Switch Power”
of “Personal Computer” (See Figure 2) may be im-
plemented by a series of activations of similar “Switch
Power” methods from component objects “Output In-
terface” and “Other Input Interface.”

At the end of High-order Object Modeling, we have
hierarchical layers of High-order Object Diagrams and
Primitive Object Diagrams for the system of interest.
The eventual designers of the system can be guided
through the analysis of the system via this hierarchy of
the object diagrams. More discussions about HOOM,
such as object inheritance and cardinality constraint,
can be found in the paper [5] .

2.2 Object Information Flow Model
Object Information Flow Model details the trans-

formation of object information flows through infor-
mation processes. A High-order Information Flow Di-
agram (HOIFD) is first derived from a High-order
Object Diagram. Processes in HOIFD are then de-
composed to low-order information processes in Low-
order Information Flow Diagrams. The purpose of
this model is to help analysts identify and better un-
derstand methods from objects during the High-order
Object Modeling.

OIFM provides a functional view of the system in
terms of information source, sink, and process. An
object acts as an information source or sink in this
model. An information source provides information
flow that flows into and triggers a process. An infor-
mation sink accepts the output flow from one or more
processes. In this way, OIFM shows how information
is transformed from a source object to a sink object.

To illustrate OIFM, we again resort to the use of
“Personal Computer” as our example. Objects are
represented by rectangular boxes and the processes
by circles. The HOIFD for “Personal Computer” is
shown in Figure 4. Since “Personal Computer” has
the object label ‘ O I 7 its corresponding HOIFD is given
the diagram label “HOIFD 0.” Objects “Users” and
“Personal Computer” are information sources that ini-
tiate the process “Switch Power.” At the other end of

230

Figure 4: High-order Information Flow Ditagram
for "Personal Computer"

LOIFD PO.3. : Switch Power

Figure 5: Low-order Information Flow Diagram
for "Switch Power" Process

"Switch Power," object "Personal Computer" serves
as the information sink.

Each process in HOIFD corresponds to a method
in the high-order object HOIFD. At this point, we
wish to better understand how each of these high-order
processes behave, so we further decompose each pro-
cess to sub-processes in Low-order Information Flow
Diagram (LOIFD). LOIFD in Figure 5 shows the de-
composition of the high-order process "Switch Power."
The low-order process "Switch CPU Power" has the
process label "P.0.3.1" which means it is decomposed
from the high-order process "P.0.3."

The notations and techniques used in constructing
an Object Information Flow Diagram are consistent
with those used in deriving Data Flow Diagrams. This
is not a coincidence, HOOMT attempts to integrate
OOA with SA.

3 Conclusion
In this paper, we have presented the High-order

Object Modeling Technique, which provides a struc-
tured approach for analysis and design of both the
object and functional models. In essence HOOMT
tightly integrates OOA with structured analysis. It
uses the all-too-familiar concept of divide-and-con quer

and decomposes high-order objects in HOOIVI and pro-
cesses in OIFM to their component objects and sub-
processes respectively. The top-down development of
the HOOM and OIFM provides a systematic approach
to the realization of a more structured system with
highly cohesive clusters.

Thus far in this research, we have developed OIFM
and HOOM for OOA. The future direction of the re-
search will be geared towards developing a dynamic
model using State Transition Diagrams and finding a
set of appropriate metrics for evaluating the effective-
ness of HOOMT.

Acknowledgments

comments on the draft of this paper.

References

We would like to thank Dr. Lijun Dong for her

Coad, P. and E. Yourdon, Object-Oriented Analy-
sis, 2nd ed., Prentice Hall, Englewood Cliffs, New
Jersey, 1991.

Colbert, E. "The Object-Oriented Software Devel-
opment Method: A Practical Approach to Object-
Oriented Development" , TRI-Ada 89 Proceedings,
October 1989, pp. 400-415.

Graham, I. "Migration Using SOMA: A semanti-
cally rich method of object-oriented analysis, Jour-
nal of Object-Oriented Programming", Vol. 5, No.
9, February 1993, pp. 31-42.

Graham, I. Object-Oriented Methods, 2nd ed.,
Addison-Wesley Publishing Company Inc., New
York, 1994.

Liu, Xiaoqing F'rank. "HOOM: A High-order
Object-oriented Model", to be submitted for pub-
lication.

Loy, P.H. "A Comparison of Object-Oriented and
Structured Development Methods", A C M SIG-
SOFT Software Engineering Notes, Vol. 15, No.
1, January 1990, pp.44-48.

Rumbaugh, J et al. Object-Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

Vazquez, F. "Using Object Oriented Structured
Development To Implement A Hybrid System",
Software Engineering Notes of A C M SIGSOFT,
Vol. 18, No. 4, October 1993, pp. 44-53.

Ward, P.T. "How to Integrate Object Orientation
with Structured Analysis and Design", IEEE Soft-
ware, March 1989, pp.74-82.

231

	Missouri University of Science and Technology
	Scholars' Mine
	1-1-1997

	High-Order Object Model Based Software Analysis
	Xiaoqing Frank Liu
	Hungwen Lin
	Recommended Citation

	High-order object model based software analysis

