
Missouri University of Science and Technology
Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

1-1-1997

A Concurrency Control Algorithm for an Open
and Safe Nested Transaction Model
Sanjay Kumar Madria
Missouri University of Science and Technology, madrias@mst.edu

Follow this and additional works at: http://scholarsmine.mst.edu/comsci_facwork

Part of the Computer Sciences Commons

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer
Science Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law.
Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

Recommended Citation
S. K. Madria, "A Concurrency Control Algorithm for an Open and Safe Nested Transaction Model," Proceedings of 1997 International
Conference on Information, Communications and Signal Processing , 1997, Institute of Electrical and Electronics Engineers (IEEE), Jan
1997.
The definitive version is available at https://doi.org/10.1109/ICICS.1997.652111

http://www.mst.edu/?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.mst.edu/?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/ICICS.1997.652111
mailto:scholarsmine@mst.edu

International Conference on
Information, Communications and Signal Processing
ICICS '97
Singapore, 9-12 September 1997

2c2.2

A Concurrency Control Algorithm for an Open and Safe
Nested Transaction Model

Sanjay Kumar Madria

School of Computer Science
University Sains Malaysia

11800 Minden, Penang, Malaysia
skm@cs.usm.my

Abstract

In this paper, we present a concurrency control
algorithm for an open and safe nested
transaction model. We use prewrite operations
[19] in our model to increase the concurrency.
Prewrite operations are modeled as
subtransactions in the nested transaction tree.
The subtransaction which initiates prewrite
subtransactions are modelled as recovery point
subtransaction [23]. The recovery point
subtransaction can release their locks before its
ancestors commit. Thus, our model increases
concurrency in comparison to other nested
transaction models. Our model will be uselid
in the environment of long-running
transactions common in object oriented
databases, computer aided design and sof"
development process.

1 Introduction

In a nested transaction model [18], a
subtransaction may contain operations to be
performed concurrently, or operations that may
be aborted indegndently of their invoking
transaction. Such operations are considered as
subtransactions of the original transaction.
This parent-child relationship defines a nested
transaction tree, and such transactions ani!
termed as nested transactions. Failure d
subtransactions may result in invocation cf
alternate subtransactions that could replace the
failed ones to accomplish the successful
completion of the whole transaction. A child
transaction has access to the data locked by its
parent. It is atomic with respect to its parent
and its siblings. It is serializable with its
siblings. It becomes permanent only if its
parent becomes permanent. If a parent aborts,
all its descendants' effects are to be undone.
Therefore, a child's scope is restricted to its
parent only. Hence, this model is termed as
closed nested transaction model. A parent
commits only after all its children ate
terminated.

In [17], Lynch has presented a
complete proof of the exclusive locking

algorithm for nested transactions. Reed [26]
has presented a multi-version timestamp
concurrency control algorithm to provide
nested transaction based data management. In
[11, a formal analysis of the algorithm is given.
Moss [18] has extended two phase locking
with separate readwrite locks to handle
nesting. A formal version of this algorithm
appeared in [5]. In [7], the read-update locking
algorithm [29] has been generalized and a new
commutative locking algorithm has been
introduced to handle nested transactions.
Fekete et al. [4] have presented a serialization
graph construction for nested transactions. The
quorum consensus algorithm for data
replication is generalized by Goldman in [8] to
accommodate nested transactions. The
multi-granularity algorithm has been extended
to nested transaction systems in [13]. Nested
transactions have also been discussed in the
context of B-Trees [3] and linear hash
structures [22]. Some more related work
appears in [12,14]. Most of the above
mentioned algorithms are discussed using U0
automaton model [16]. Many of these
algorithms appear in [4].

Nesting in transactions corresponds
either to the nesting of procedures or to the
nesting of layers of data abstractions. In the
first kind [15, HI), a subtransaction's updates
are not visible outside its parent and therefore,
availability is restricted. If the parent aborts,
the subtransaction is also aborted. In the
second kind [2,28,30], a subtransaction's
modifications are visible to other transactions
at the same level of data abstraction as soon as
it commits, even if its parent is still active.
Hence, it provides more availability in
comparison to the first model. Since basic
(i.e , read and writes) locks are released early
and have possibly been acquired by other
transactions, an abort has to take place in the
form of compensatory operation.

A related but more complex notion cf
nesting emphasizing level of data abstraction
has been studied in [2,21,30]. To exploit
layer specific semantics at each level d
operation nesting, Weikum presented a
multi-level transaction model [30] called open

0-7803-3676-3/97/$10.00 0 1997 IEEE

907

nested transaction model. The model takes
into account the commutative properties of the
semantics of operations at each level of data
abstraction to achieve a higher degree d
concurrency. If two operations at the same
hgher level commute then their conflicting
descendants at the same lower level will be
allowed to execute since they will not
introduce any inconsistencies. In this model, a
subtransaction is allowed to release locks on
finishing before the commit of higher level
transactions. In case a hgher level transaction
aborts, the aborted transaction's effect is to be
undone by compensatory transaction. This
model has also been studied in the fiamewodc
of object oriented databases in [25,27].

In the closed nested transaction
model, the availability is restricted as the
scope of each subtransaction is restricted to its
parent only. This forces a subtransaction to
pass all its locks and versions of data objects
updated to its parent on commit. The effect d
a committed subtransaction is made permanent
only when its top level transaction commits.
In many applications, it is unacceptable that
the work of a long-lived transaction (common
in engineering design applications [9,10] is
completely undone by in case transaction
eventually fails at finishing stage. The current
strategy forces short-lived transactions to wait
to acquire their locks until top level
transactions commit and release their locks.
Therefore, the model is not appropriate for the
system that consists of long and short
transactions.

In the open nested transaction model,
the leaf level locks are released early only if the
semantics of the operations are known and the
corresponding compensatory actions defined at
each level. However, the semantics d
transactions may not be known and not all
actions may be compensatable (e.g., handing
over a cheque). In real time situations, there
are other classes of operations that have an
irreversible external effect, such as handing
over huge amounts of money at an automatic
teller machine (ATM). Such operations have
to be deferred until the top level transaction
commits, which restricts availability.

There are two basic motivations
behnd our open and safe new nested
transaction model presented in [19,231. First,
it is desirable that long-lived transactions
should be able to release their locks before top-
level transactions commit. Second, it may not
be desirable or possible to undo or compensate
the effects of one or more of the important
committed descendants after the failure of a
higher level transaction due to an abort or a
system crash. We have presented a cmh
recovery algorithm of our model in [23]. Our
model allows some particular sub-transactions
to release their locks before their ancestor

transactions commit. This allows the other
subtransactions to acquire required locks
earlier. Our model b i l e s the situations where
a committed lower level subtransaction's elki
cannot In undone or compensated in case of a
higher level transaction's failure. It is possible
that a transaction's semantics may be such that
beyond a certain point, either it cannot
rollback. entirely or its effect should not be
compensated. We introduced the concept cf
a "recovery point sulbtransaction" [23] of a
top-level transaction in a nested transaction
tree. It is essentially a subtransaction after the
commit of which its ancestors are not allowed
to rollback. In other words, once the m e I y
point subtransaction of' a top level transaction
has committed, all its superior transactions
forced lo commit. In case, it aborts, its
ancestors can clioose an alternate path to
complete their executicm. It says that recovery
point subtransaction's commit (e.g. mailing a
cheque) is crucial fcjr the commit of its
anceston. In case a superior transaction aborts
or systeim fails after the commit of its recovery
point subtransaction, the failed transaction has
to complete on system revival. Such a
transactlion execution permits a recoveIy point
subtramaction to reveal its result to other
transachions at any level of nesting before its
superior transactions cctmmit. A recovery point
subtramaction's effect i s made durable before
its top level transiWion's commit. This
results in relaxation of the isolation
property of the transaction.

In our model, to avoid undo actions
and the consequent cascading aborts as well as
to increase the availability , we assumed that
each write issues a prewrite operation [19,23]
for the objects it intends to write. Each
prewrite operation contains the value that a
user transaction wants to write and precedes
the associated final wrile. A prewrite operation
actually does not change a data object's state
but only announces the value the data object
will have after the associated write is
performed. In response to a read operation,
each DM returns the lprewrite value (if any)
otherwise it returns the write value. The
advantage of prewrite is that a read operation
can get the value befoE a data object's state is
changed. Hence, this rwults in increasing the
availability fuaher wiith reduced execution
time. Prewrite opecations are particularly
helpful in the engineening design applications
19,101 and in large s~oftware design projects
[111 etc. where transactiions are long.

In our nested transaction model [19],
a subtramaction that initiates different prewrite
access subtransactions at leaf level for M e m t
data objects is defined to be the recovery point
subtransaction. These announced preWrite
values are made visible to other
subtransactions af?er the commit of the

908

recovery point subtransaction The prewrite
subtransactions release their locks before their
ancestors commit. Discarding some of the
prewrites before the commit of the recovery
point subtransaction will not introduce
cascading aborts since the prewrite values ate
made visible only after the commit of the
recovery point subtransaction.

In this paper, we will formally design
our nested transaction model and discuss the
concurrency control algorithm for our model.

2 Nested Transaction Model
and System Configuration

Our nested transaction system model consists
of transaction managers (TMs), recovery
managers (RMs) and data managers (DMs).
The data objects are modeled by the data
managers (DMs). Each data manager keeps a
copy of the data object in the secondary
storage, called stable-db. The prewrite and
write values of each object are kept in the
respective buffers at the corresponding DMs.
These are called prewrite- and write-buffers,
respectively. Physically, only a subset of these
DMs will have prewrite and write values of the
data objects in the corresponding buffers. A
read operation gets the value of the referenced
data object from the prewrite-buffer (if any)
otherwise it gets the value from the
write-buffer. If the DM does not even have a
copy of the data object in the write-buffer, the
read operation gets the value from the stable-db
copy of the data object. The write-buffer's
contents of a data object are transferred
periodically to stable storage.

Our model has two transaction
managers (TMs) for performing read
(read-TM), write (write-TM) and of these,
read- and write-TMs are initiated by the user
transactions. A hidden daemon transaction is
associated with each write-TM to co-ordmte
the buffer management operations; i.e., the
transfer of a data object's value to stabledb
during the normal operations. To achieve the
notion of spontaneity and transparency of M e r
management operation, the daemon transaction
wakes up and commits with respect to its
associated transaction. Therefore, during the

span of daemon transaction, a daemon can
initiate many transfer-RMs.

TMs are situated at one level below
user transactions. Next level of transaction
hierarchy has six different recovery managers
for co-ordinating read (read-RM), prewrite
(prewrite-RM), write (write-RM), transfer
(transfer-RM) These FUvls initiate access
subtransactions situated at the leaf level. Each
read-, prewrite- and write-RM initiates read,
prewrite and write access subtransactions,
respectively. A read access reads the value
either from the prewrite- or the write-baer d
the data object whereas a write subtransaction
accesses only the write-buffer component of the
data object. The nested transaction tree
structure is shown in figure. 1.

We assume that each user transaction
knows its write-set before initiating a
write-TM in order to write all the data objects
in its write-set. A write-TM first initiates a
prewrite-RM which further initiates prewrite
access subtransactions in order to announce
prewrites for all the data objects contained in
the write-set. This value for each data object is
written in the prewrite-buffer allocated in the
volatile memory. Modeling prewrites at leaf
level provides user transparency to the prewrite
operations.

We formally speclfy the prewrite-RM
as the recovery point subtransaction of the top
level transaction. Once the prewrite-RM has
committed, the prewrite values become visible
outside its parent's view at any level of nesting
without necessarily requiring the commit of all
its superior transactions. After the
prewrite-RM's commit, the write-TM initiates
a write-RM to update all the data objects
whose prewrite values have been announced
before. The find updates are written in the
write-buffers allocated in the volatile memory
at each DM. With the invocation of each
write-TM automaton, a daemon transaction is
made active automatically which further
initiates transfer-Rh4s. A transfer-Rh4 initiates
a transfer access subtransaction to transfer the
write-buffer's value to the stable-db. The
write-buffeh contents can be &erred
without the commit of the top level transaction
because write-values, once written, cannot be
undone or lost.

(WFUTE-TMIDAEMON

Read Prewrite write transfer ..

Figure 1

909

3 Concurrency Control and
Locking

In this section, we mainly discuss the type af
conflicts which occur in our model during
normal operations and the locks needed to
control them.

A read access transaction can read the
value from the prewrite-buffer if it has the
prewritten value of the corresponding data
object. Otherwise, it gets the value from the
write-buffer. A d e r access also reads a
write-buffer's value to transfer it to the
stable-db. The prewrite and write access
subtransactions access prewrite- and
write-buffen, respectively.

A prewrite operation introduces some
more conflicting operations apart from usual
read-write and write-write conflicts. The three
pairs of conflicting Operations m
prewrite-prewrite, prewrite-write and
read-prewrite (only if read returns the
prewrite-buffer's value). A prewrite-prewrite
conflict occurs due to the fact that a prewrite
value cannot be changed unless its associated
write is performed. When a write operation is
operating, its associated prewrite value cannot
be changed or vice-versa. This is because a
write operation replaces the value of the data
object in the write-buffer by the
prewrite-buffer's value. Hence, the prewrite and
write operations cannot be executed
concurrently. Also, while reading a data
object's prewrite value, no other prewrite
access transaction can change its prewrite value
or vice-vena. Otherwise, a read operation can
get an inconsistent value. A transfer access is
similar to a read access and hence, it does not
introduce any new pair of conflicting
operations.

To control concurrent read, prewrite,
write and t m f e r accesses, each access
subtransaction has to acquire its respective
lock before accessing a data object. Our
algorithm uses a read-lock for read and transfer
access operations, and write- and
prewrite-locks for write and prewrite access
operations, respectively. Prewrite- and
write-locks ac exclusive locks whereas a
read-lock is a shared lock.

In our locking protocol, a transaction
may hold and retain locks. A transaction
holding a lock for an object is allowed to
access the corresponding object. The object is
not allowed to access if a transaction only
retains the lock. Since the accesses are situated
at leaf level only, all the holders of locks are at
leaf level only. A retained lock is only a place
holder indicating that transactions outside the
hierarchy of the retainer cannot acquire the
same lock or any of its conflicting locks but

descendants of the retainer can acquire the same
or non-conflicting locks.

Whenever a prewrite access
transaction commits, it passes its prewrite-lock
to its parent transaction (prewrite-RM). The
prewrite-lock is passed to the parent so that the
transactions outside the parent's hiemhy
cannot get the prewriite-lock. This is because
in case an upper level transaction of the
committed prewrite access subtransaction
aborts or system fails, the prewrite value is to
be discarded. However, whenever the recovery
point subtransaction (,prewrite-RM) commits,
the committed subtransaction's lock is passed
directly to the least common ancestor (of other
waiting accesses and the committed
transaction) without necessarily the commit d
all its superior transactions upto the least
commain ancestor (1.c.a.). This also holds in
case of commit of recovery point
subtransaction's superior transactions. The
1.c.a. of waiting acasses and of committed
transaction is determined dynamically at run
time. The prewrite-lock cannot be released
entirely because a new prewrite operation for
the same data object cannot be initiated unless
the write operation corresponding to the last
prewrite is committed.

Locks inherited by a 1.c.a. enables
waiting read and write. access subtransactions
to acquire their respective locks early. This
increases the availability further since a waiting
access subtransaction 'r2 can get its respective
lock before all the ancestors of the committed
transaction TI upto the least common ancestor
of T I and T2 are necessarily committed. For
similar reasons as stated before, whenever a
write access transaction commits, its lock is
also passed to the least common ancestor cf
other waiting access sd"actions to enable
them to acquire their respective locks. This
also holds for all the ancestors of the
committed write access; subtransactions in case
of their commit. Passing the lock early to
1.c.a. is safe because once the recovery point
subtrmsaction is committed, its higher level
transactions have to commit. It seems that
once a lransaction is committed, its write-lock
can be released entirely but this is not
desirable for the following reasons. First, a
transaction cannot get a write-lock unless its
ancestoirs hold prewrite- and read-locks for the
object. Therefore, releasing a write-lock does
not help unless the otlher conflicting locks are
released. Second, in case of restart, some
transactions might MEd the write-locks to
complete their interrupted execution due to
failure.

The prewrite-lock held by a prewrite
access subtransaction is released in case it, or
any of its ancestors, aborts or system fails
because its effect is to be discarded. However,

910

when a write access subtransaction aborts after
it acquires the write-lock, its lock is passed to
its parent. Furthermore, when a transaction
aborts, the write-lock held by any of its
descendants is inherited by the parent of the
aborted transaction. In effect, the write- and/or
prewrite-lock held by any transaction (except
by prewrite access subtransactions) is not
released entirely in case the lock retaining
transaction aborts or system crashes. Releasing
a prewrite- or a write-lock entirely in case af
aborts or system crash may create an
inconsistent state. This is due to the f k t that
some subtransactions might have to complete
their remaining execution on revival.
Read-only transactions can release their lock
entirely in case of their aborts and pass their
locks to parent transactions on commit. A
transfer access releases its lock to the daemon
transaction on commit as its &em are not
going to be hscarded in case of abom at
higher level or system crash. In case of a
transaction abort in the hierarchy of daemon
transactions, its lock is released entirely. The
daemon transaction releases its lock according
to its associated transaction.

Formally, we have the following
locking rules :
1. A read access can acquire a read-lock only if
the prewrite-lock and write-lock on the
corresponding DM is retained by its ancestor
transaction.
2. A prewrite access subtransaction can get its
respective prewrite-lock only if the prewrite-,
write- and read-locks are retained by its
ancestor transactions.
3. A write access transaction can get its
write-lock only if read-, prewrite-, write-locks
are held by its ancestors.
4. A transfer access can get a read-lock only if
the write-lock is held by its ancestors. Note
that this rule is similar to rule 1.
5 . When a read access subtransaction commits,
it releases its lock to its parent. When its
parent commits, it passes the lock to its parent
and so on.
6. When a transfer access transaction commits,
it passes its lock to the daemon transaction.
When a daemon commits, it passes its lock
according to its associated transaction.
7. When a prewrite access commits, it passes
its lock to its parent. When its parent commits
(prewrite-RM), it passes the lock to the least
common ancestor of all other access
descendants waiting for the lock.
8. When a write access transaction commits, it
releases its lock to the least common ancestor
of all other access descendants waiting for the
lock.
9. When a write access or prewrite-RM or any
of its ancestor transaction aborts, the aborted
transaction's locks are passed to its parent
transaction.

10. When a read-only transaction aborts, its
lock is released entirely. When a transaction in
the hierarchy of daemon transaction aborts, its
lock is released entirely.

4 Conclusion

In this paper, we have presented a concurrency
control algorithm for an opne and safe nested
transaction model. Our algorithm increases
concurrency as compmd to other models as it
allows early release of locks by some
subtransactions. We have introduced prewrite
operations in our model to increases the
concurrency and to avoid undo actions on
transaction aborts. We are in the process d
proving the correctness of th~s algorithm using
110 automaton model.

References

[I] Aspnes, J., Fekete, A., Lynch, N., Merrit,
M., and Weihl, W., A Theory of Timestamp
Based Concurrency Control for Nested
Transactions, In Proceedmgs of 14th
International Confenme on Very Large
Databases, pp. 431-444, Aug., 1988.
[2] Been, C., Bemstein, P.A. and Goodman,
N., A Model for Concurrency in Nested
Transaction System, Journal of the ACM,
Vol. 36, No. 1, 1989.
[3] Fu, A. and Kameda, T., Concurrency
Control of Nested Transactions Accessing
B-trees, In proceedings of 8th ACM
Symposium on Priniciples od Database
Systems, pp. 270-285, 1989.
[4] Fekete, A., Lynch, N., Memt, M. and
Whiel, W., Atomic Transactions, Morgan-
Kaufmann, 1993.
[5] Fekete, A., Lynch, N., Memt, M. and
Whiel, W., Nested Transactions and
Reamr i t e Locking, In Proceedings of the 6th
ACM Symposium on Principles of Database
Systems, pp. 97-111, San diego, CA,
1987.
[6] Fekete, A., Lynch, N., Meet , M. and
Weihl, W.E., Commutativity-Based Locking
for Nested Transactions, Journal of System
Sciences, Vol. 41, No. 1, pp. 65-156, Aug.,
1990.
[7] Fekete, A., Lynch, N., and Weihl,
W.E., A Serialization Graph Construction
for Nested Transactions, In proceedings d
ACM Symposium on Principles of Database
Systems, 1990.
[8] Goldman, K. and Lynch, N., Nested
Transactions and Quorum Consensus, ACM
TODS, Dec. 1994.
[9] Korth, H.F., Kim, W., Bancilhon, On
Long-Duration CAD Transactions, Information
Science, 46, pp.73-107, Oct.1990.

91 1

[lo] Kim, W., Lone, R., Mcnabb, D. and
plouf€e, W., A Transaction Mechanism fir
Engineering Design Databases, in Proceedings
of the 10th International Conference on Very
Large Databases, VLDB Endowment, pp. 355-
362, 1984.
[l l] Korth, H.F., and Speegle, G., Long
Duration Transactions in Software Design
Projects, in 6th International Conference on
Data Engineering, IEEE, New York, pp.568 -
574, 1990.
[12] Lee, J.K., Precision Locking for Nested
Transaction Systems, Second International
Conference on Information and Knowledge
Management (CIKM’93), Nov. 1993.
[I31 Lee, J.K. and Fekete, A., Multi-
granularity Locking for Nested Transaction
Systems, In proceedings of MFDBS’91, pp.
160-172, Lecture notes in Computer Science,
495, Springer Verlag, 1991.
[14] Lee, J.K. and Fekete, A., Predmte
Locking for Nested Transaction Systems, In
proceedings of Australian Database Research
Conference, pp.217-23 1, Feb. 1992.
[15] Liskov, B.. Distributed Computing in
Argus, Communication of ACM. Vol. 31,

[16] Lynch, N. and Memt. M., Introduction
to the Theory of Nested Transactions,
Theoretical Computer Science, Vol. 62, pp.

[I71 Lynch. N.. Concurrency Control for
Resilient Nested Transactions, Advances in
Computing Research, Vol. 3, pp. 335-376,
1986.
[181 Moss. J.E.B.. Nested Transactions: An
Approach to Reliable Distributed
Computing, Ph.D. Thesis. Also, Techcal
Report MIT/LCS/TR-260 MIT Laboratory
for Computer Science, Cambridge, MA.,
April, 1981.
[19] Madria, S.K.. Concurrency Control and
Recovery Algorithms in Nested Transaction
Environment and Their Proofs of Correctness,
Ph.D. Thesis, Department of Mathematics,
Indian Institute of Technology, Delhi, 1995.
[20] Madria. S.K. and Bhargava, B., System
Defined Prewrites to Increase Concurrency in
Databases, accepted for First East-Europian
Symposium on Advances in Databases and
Information Systems (in co-operation with

NO. 3, pp. 300-312, March, 1988.

123-185, 1988.

ACM-SIGMOD), St. -Petenburg (Russia),
Sept.97.
[21] IVIoss, J., Griflith, N. and Graham,
M., Abstraction in Concurrency Control and
Recovery Management (revised), Technical
Reporl COINS 86.20, University d
Massachusetts at Amberest, May, 1986.
[22] Madria, S.K., Maheshwari, S.N. and B.
Chandra, Formalization of Liear Hash
Structures using Nested Transactions and U0
Automaton Model, communicated to
ASIAN’97.
[23] Madria, S.K, Maheshwari, S.N,
Chandra, B., Bhargava, B., Crash Recovery
Algorithm in an Open and Safe Nested
Transaction Model, 8th International
Conference on Database and Expert System
Applications (DEXA,’97), France, Sept.97,
Lecture Notes in Computer Science, Springer
Verlag, 1997.
[24] Muth, P., Raka~w, T.C., Weikum, G.,
Brossbcr, P., Hasse, C., Semantic concurrency
Control in Object-Oriented Database Systems,
In proceedings of the 9th International
Conference on Data Engineering, pp. 233-242,
1993.

Synchronization in a Decentralized
Computer System, Ph.D. Thesis. Also,
Technical Report IUIIT/LCS/TR-205, MIT
Laboratory for Computer Science, MA., 1978.
[26] Resende, Rodolfo F., Agrawal, D.,
Abbadi, A m El, Semantic Locking in Object
Oriented Database Systems, Technical Report
TRCS 94-01, University of California at Santa
Barbara, 1994.
[27] Weihl, W.E., Specifications and
Implimentation of Atomic Data Types, Ph.D.
Thesis. Also, ‘Technical Report
MIT/L,CS/TR-3 14, MIT Laboratory fix
Computer Science, Cambridge, MA., March,
1984.
[28] Weihl, W E., Commutativity-Based
Concurrency Control for Abstract Data
Types, IEEE Transaclion on Computers, Vol.
37, No. 12, Dec., 1988.
[29] Weikum, G., Principles and
Realization Strategies of Multi-Level
Transaction Management, ACM Transaction
on Database System, Vol. 16, No. 1, March,
1991.

[25] Reed, D.P, Naming and

912

	Missouri University of Science and Technology
	Scholars' Mine
	1-1-1997

	A Concurrency Control Algorithm for an Open and Safe Nested Transaction Model
	Sanjay Kumar Madria
	Recommended Citation

	A concurrency control algorithm for an open and safe nested transaction model

