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Abstract 

In this paper, we present a concurrency control 
algorithm for an open and safe nested 
transaction model. We use prewrite operations 
[19] in our model to increase the concurrency. 
Prewrite operations are modeled as 
subtransactions in the nested transaction tree. 
The subtransaction which initiates prewrite 
subtransactions are modelled as recovery point 
subtransaction [23]. The recovery point 
subtransaction can release their locks before its 
ancestors commit. Thus, our model increases 
concurrency in comparison to other nested 
transaction models. Our model will be uselid 
in the environment of long-running 
transactions common in object oriented 
databases, computer aided design and sof" 
development process. 

1 Introduction 

In a nested transaction model [18], a 
subtransaction may contain operations to be 
performed concurrently, or operations that may 
be aborted indegndently of their invoking 
transaction. Such operations are considered as 
subtransactions of the original transaction. 
This parent-child relationship defines a nested 
transaction tree, and such transactions ani! 
termed as nested transactions. Failure d 
subtransactions may result in invocation cf 
alternate subtransactions that could replace the 
failed ones to accomplish the successful 
completion of the whole transaction. A child 
transaction has access to the data locked by its 
parent. It is atomic with respect to its parent 
and its siblings. It is serializable with its 
siblings. It becomes permanent only if its 
parent becomes permanent. If a parent aborts, 
all its descendants' effects are to be undone. 
Therefore, a child's scope is restricted to its 
parent only. Hence, this model is termed as 
closed nested transaction model. A parent 
commits only after all its children ate 
terminated. 

In [17], Lynch has presented a 
complete proof of the exclusive locking 

algorithm for nested transactions. Reed [26] 
has presented a multi-version timestamp 
concurrency control algorithm to provide 
nested transaction based data management. In 
[ 11, a formal analysis of the algorithm is given. 
Moss [18] has extended two phase locking 
with separate readwrite locks to handle 
nesting. A formal version of this algorithm 
appeared in [5]. In [7], the read-update locking 
algorithm [29] has been generalized and a new 
commutative locking algorithm has been 
introduced to handle nested transactions. 
Fekete et al. [4] have presented a serialization 
graph construction for nested transactions. The 
quorum consensus algorithm for data 
replication is generalized by Goldman in [8] to 
accommodate nested transactions. The 
multi-granularity algorithm has been extended 
to nested transaction systems in [13]. Nested 
transactions have also been discussed in the 
context of B-Trees [3] and linear hash 
structures [22]. Some more related work 
appears in [12,14]. Most of the above 
mentioned algorithms are discussed using U0 
automaton model [16]. Many of these 
algorithms appear in [4]. 

Nesting in transactions corresponds 
either to the nesting of procedures or to the 
nesting of layers of data abstractions. In the 
first kind [ 15, HI), a subtransaction's updates 
are not visible outside its parent and therefore, 
availability is restricted. If the parent aborts, 
the subtransaction is also aborted. In the 
second kind [2,28,30], a subtransaction's 
modifications are visible to other transactions 
at the same level of data abstraction as soon as 
it commits, even if its parent is still active. 
Hence, it provides more availability in 
comparison to the first model. Since basic 
(i.e , read and writes) locks are released early 
and have possibly been acquired by other 
transactions, an abort has to take place in the 
form of compensatory operation. 

A related but more complex notion cf 
nesting emphasizing level of data abstraction 
has been studied in [2,21,30]. To exploit 
layer specific semantics at each level d 
operation nesting, Weikum presented a 
multi-level transaction model [30] called open 

0-7803-3676-3/97/$10.00 0 1997 IEEE 

907 



nested transaction model. The model takes 
into account the commutative properties of the 
semantics of operations at each level of data 
abstraction to achieve a higher degree d 
concurrency. If two operations at the same 
hgher level commute then their conflicting 
descendants at the same lower level will be 
allowed to execute since they will not 
introduce any inconsistencies. In this model, a 
subtransaction is allowed to release locks on 
finishing before the commit of higher level 
transactions. In case a hgher level transaction 
aborts, the aborted transaction's effect is to be 
undone by compensatory transaction. This 
model has also been studied in the fiamewodc 
of object oriented databases in [25,27]. 

In the closed nested transaction 
model, the availability is restricted as the 
scope of each subtransaction is restricted to its 
parent only. This forces a subtransaction to 
pass all its locks and versions of data objects 
updated to its parent on commit. The effect d 
a committed subtransaction is made permanent 
only when its top level transaction commits. 
In many applications, it is unacceptable that 
the work of a long-lived transaction (common 
in engineering design applications [9,10] is 
completely undone by in case transaction 
eventually fails at finishing stage. The current 
strategy forces short-lived transactions to wait 
to acquire their locks until top level 
transactions commit and release their locks. 
Therefore, the model is not appropriate for the 
system that consists of long and short 
transactions. 

In the open nested transaction model, 
the leaf level locks are released early only if the 
semantics of the operations are known and the 
corresponding compensatory actions defined at 
each level. However, the semantics d 
transactions may not be known and not all 
actions may be compensatable (e.g., handing 
over a cheque). In real time situations, there 
are other classes of operations that have an 
irreversible external effect, such as handing 
over huge amounts of money at an automatic 
teller machine (ATM). Such operations have 
to be deferred until the top level transaction 
commits, which restricts availability. 

There are two basic motivations 
behnd our open and safe new nested 
transaction model presented in [ 19,231. First, 
it is desirable that long-lived transactions 
should be able to release their locks before top- 
level transactions commit. Second, it may not 
be desirable or possible to undo or compensate 
the effects of one or more of the important 
committed descendants after the failure of a 
higher level transaction due to an abort or a 
system crash. We have presented a cmh 
recovery algorithm of our model in [23]. Our 
model allows some particular sub-transactions 
to release their locks before their ancestor 

transactions commit. This allows the other 
subtransactions to acquire required locks 
earlier. Our model b i l e s  the situations where 
a committed lower level subtransaction's elki 
cannot In undone or compensated in case of a 
higher level transaction's failure. It is possible 
that a transaction's semantics may be such that 
beyond a certain point, either it cannot 
rollback. entirely or its effect should not be 
compensated. We introduced the concept cf 
a "recovery point sulbtransaction" [23] of a 
top-level transaction in a nested transaction 
tree. It is essentially a subtransaction after the 
commit of which its ancestors are not allowed 
to rollback. In other words, once the m e I y  
point subtransaction of' a top level transaction 
has committed, all its superior transactions 
forced lo commit. In case, it aborts, its 
ancestors can clioose an alternate path to 
complete their executicm. It says that recovery 
point subtransaction's commit (e.g. mailing a 
cheque) is crucial fcjr the commit of its 
anceston. In case a superior transaction aborts 
or systeim fails after the commit of its recovery 
point subtransaction, the failed transaction has 
to complete on system revival. Such a 
transactlion execution permits a recoveIy point 
subtramaction to reveal its result to other 
transachions at any level of nesting before its 
superior transactions cctmmit. A recovery point 
subtramaction's effect i s  made durable before 
its top level transiWion's commit. This 
results in relaxation of the isolation 
property of the transaction. 

In our model, to avoid undo actions 
and the consequent cascading aborts as well as 
to increase the availability , we assumed that 
each write issues a prewrite operation [19,23] 
for the objects it intends to write. Each 
prewrite operation contains the value that a 
user transaction wants to write and precedes 
the associated final wrile. A prewrite operation 
actually does not change a data object's state 
but only announces the value the data object 
will have after the associated write is 
performed. In response to a read operation, 
each DM returns the lprewrite value (if any) 
otherwise it returns the write value. The 
advantage of prewrite is that a read operation 
can get the value befoE a data object's state is 
changed. Hence, this rwults in increasing the 
availability fuaher wiith reduced execution 
time. Prewrite opecations are particularly 
helpful in the engineening design applications 
19,101 and in large s~oftware design projects 
[ 111 etc. where transactiions are long. 

In our nested transaction model [19], 
a subtramaction that initiates different prewrite 
access subtransactions at leaf level for M e m t  
data objects is defined to be the recovery point 
subtransaction. These announced preWrite 
values are made visible to other 
subtransactions af?er the commit of the 
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recovery point subtransaction The prewrite 
subtransactions release their locks before their 
ancestors commit. Discarding some of the 
prewrites before the commit of the recovery 
point subtransaction will not introduce 
cascading aborts since the prewrite values ate 
made visible only after the commit of the 
recovery point subtransaction. 

In this paper, we will formally design 
our nested transaction model and discuss the 
concurrency control algorithm for our model. 

2 Nested Transaction Model 
and System Configuration 

Our nested transaction system model consists 
of transaction managers (TMs), recovery 
managers (RMs) and data managers (DMs). 
The data objects are modeled by the data 
managers (DMs). Each data manager keeps a 
copy of the data object in the secondary 
storage, called stable-db. The prewrite and 
write values of each object are kept in the 
respective buffers at the corresponding DMs. 
These are called prewrite- and write-buffers, 
respectively. Physically, only a subset of these 
DMs will have prewrite and write values of the 
data objects in the corresponding buffers. A 
read operation gets the value of the referenced 
data object from the prewrite-buffer (if any) 
otherwise it gets the value from the 
write-buffer. If the DM does not even have a 
copy of the data object in the write-buffer, the 
read operation gets the value from the stable-db 
copy of the data object. The write-buffer's 
contents of a data object are transferred 
periodically to stable storage. 

Our model has two transaction 
managers (TMs) for performing read 
(read-TM), write (write-TM) and of these, 
read- and write-TMs are initiated by the user 
transactions. A hidden daemon transaction is 
associated with each write-TM to co-ordmte 
the buffer management operations; i.e., the 
transfer of a data object's value to stabledb 
during the normal operations. To achieve the 
notion of spontaneity and transparency of M e r  
management operation, the daemon transaction 
wakes up and commits with respect to its 
associated transaction. Therefore, during the 

span of daemon transaction, a daemon can 
initiate many transfer-RMs. 

TMs are situated at one level below 
user transactions. Next level of transaction 
hierarchy has six different recovery managers 
for co-ordinating read (read-RM), prewrite 
(prewrite-RM), write (write-RM), transfer 
(transfer-RM) These FUvls initiate access 
subtransactions situated at the leaf level. Each 
read-, prewrite- and write-RM initiates read, 
prewrite and write access subtransactions, 
respectively. A read access reads the value 
either from the prewrite- or the write-baer d 
the data object whereas a write subtransaction 
accesses only the write-buffer component of the 
data object. The nested transaction tree 
structure is shown in figure. 1. 

We assume that each user transaction 
knows its write-set before initiating a 
write-TM in order to write all the data objects 
in its write-set. A write-TM first initiates a 
prewrite-RM which further initiates prewrite 
access subtransactions in order to announce 
prewrites for all the data objects contained in 
the write-set. This value for each data object is 
written in the prewrite-buffer allocated in the 
volatile memory. Modeling prewrites at leaf 
level provides user transparency to the prewrite 
operations. 

We formally speclfy the prewrite-RM 
as the recovery point subtransaction of the top 
level transaction. Once the prewrite-RM has 
committed, the prewrite values become visible 
outside its parent's view at any level of nesting 
without necessarily requiring the commit of all 
its superior transactions. After the 
prewrite-RM's commit, the write-TM initiates 
a write-RM to update all the data objects 
whose prewrite values have been announced 
before. The find updates are written in the 
write-buffers allocated in the volatile memory 
at each DM. With the invocation of each 
write-TM automaton, a daemon transaction is 
made active automatically which further 
initiates transfer-Rh4s. A transfer-Rh4 initiates 
a transfer access subtransaction to transfer the 
write-buffer's value to the stable-db. The 
write-buffeh contents can be &erred 
without the commit of the top level transaction 
because write-values, once written, cannot be 
undone or lost. 

(WFUTE-TMIDAEMON 

Read .. .. Prewrite .. .. write . . .. transfer .. 

Figure 1 
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3 Concurrency Control and 
Locking 

In this section, we mainly discuss the type af 
conflicts which occur in our model during 
normal operations and the locks needed to 
control them. 

A read access transaction can read the 
value from the prewrite-buffer if it has the 
prewritten value of the corresponding data 
object. Otherwise, it gets the value from the 
write-buffer. A d e r  access also reads a 
write-buffer's value to transfer it to the 
stable-db. The prewrite and write access 
subtransactions access prewrite- and 
write-buffen, respectively. 

A prewrite operation introduces some 
more conflicting operations apart from usual 
read-write and write-write conflicts. The three 
pairs of conflicting Operations m 
prewrite-prewrite, prewrite-write and 
read-prewrite (only if read returns the 
prewrite-buffer's value). A prewrite-prewrite 
conflict occurs due to the fact that a prewrite 
value cannot be changed unless its associated 
write is performed. When a write operation is 
operating, its associated prewrite value cannot 
be changed or vice-versa. This is because a 
write operation replaces the value of the data 
object in the write-buffer by the 
prewrite-buffer's value. Hence, the prewrite and 
write operations cannot be executed 
concurrently. Also, while reading a data 
object's prewrite value, no other prewrite 
access transaction can change its prewrite value 
or vice-vena. Otherwise, a read operation can 
get an inconsistent value. A transfer access is 
similar to a read access and hence, it does not 
introduce any new pair of conflicting 
operations. 

To control concurrent read, prewrite, 
write and t m f e r  accesses, each access 
subtransaction has to acquire its respective 
lock before accessing a data object. Our 
algorithm uses a read-lock for read and transfer 
access operations, and write- and 
prewrite-locks for write and prewrite access 
operations, respectively. Prewrite- and 
write-locks ac exclusive locks whereas a 
read-lock is a shared lock. 

In our locking protocol, a transaction 
may hold and retain locks. A transaction 
holding a lock for an object is allowed to 
access the corresponding object. The object is 
not allowed to access if a transaction only 
retains the lock. Since the accesses are situated 
at leaf level only, all the holders of locks are at 
leaf level only. A retained lock is only a place 
holder indicating that transactions outside the 
hierarchy of the retainer cannot acquire the 
same lock or any of its conflicting locks but 

descendants of the retainer can acquire the same 
or non-conflicting locks. 

Whenever a prewrite access 
transaction commits, it passes its prewrite-lock 
to its parent transaction (prewrite-RM). The 
prewrite-lock is passed to the parent so that the 
transactions outside the parent's hiemhy 
cannot get the prewriite-lock. This is because 
in case an upper level transaction of the 
committed prewrite access subtransaction 
aborts or system fails, the prewrite value is to 
be discarded. However, whenever the recovery 
point subtransaction (,prewrite-RM) commits, 
the committed subtransaction's lock is passed 
directly to the least common ancestor (of other 
waiting accesses and the committed 
transaction) without necessarily the commit d 
all its superior transactions upto the least 
commain ancestor (1.c.a.). This also holds in 
case of commit of recovery point 
subtransaction's superior transactions. The 
1.c.a. of waiting acasses and of committed 
transaction is determined dynamically at run 
time. The prewrite-lock cannot be released 
entirely because a new prewrite operation for 
the same data object cannot be initiated unless 
the write operation corresponding to the last 
prewrite is committed. 

Locks inherited by a 1.c.a. enables 
waiting read and write. access subtransactions 
to acquire their respective locks early. This 
increases the availability further since a waiting 
access subtransaction 'r2 can get its respective 
lock before all the ancestors of the committed 
transaction TI upto the least common ancestor 
of T I  and T2 are necessarily committed. For 
similar reasons as stated before, whenever a 
write access transaction commits, its lock is 
also passed to the least common ancestor cf 
other waiting access sd"actions to enable 
them to acquire their respective locks. This 
also holds for all the ancestors of the 
committed write access; subtransactions in case 
of their commit. Passing the lock early to 
1.c.a. is safe because once the recovery point 
subtrmsaction is committed, its higher level 
transactions have to commit. It seems that 
once a lransaction is committed, its write-lock 
can be released entirely but this is not 
desirable for the following reasons. First, a 
transaction cannot get a write-lock unless its 
ancestoirs hold prewrite- and read-locks for the 
object. Therefore, releasing a write-lock does 
not help unless the otlher conflicting locks are 
released. Second, in case of restart, some 
transactions might MEd the write-locks to 
complete their interrupted execution due to 
failure. 

The prewrite-lock held by a prewrite 
access subtransaction is released in case it, or 
any of its ancestors, aborts or system fails 
because its effect is to be discarded. However, 
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when a write access subtransaction aborts after 
it acquires the write-lock, its lock is passed to 
its parent. Furthermore, when a transaction 
aborts, the write-lock held by any of its 
descendants is inherited by the parent of the 
aborted transaction. In effect, the write- and/or 
prewrite-lock held by any transaction (except 
by prewrite access subtransactions) is not 
released entirely in case the lock retaining 
transaction aborts or system crashes. Releasing 
a prewrite- or a write-lock entirely in case af 
aborts or system crash may create an 
inconsistent state. This is due to the f k t  that 
some subtransactions might have to complete 
their remaining execution on revival. 
Read-only transactions can release their lock 
entirely in case of their aborts and pass their 
locks to parent transactions on commit. A 
transfer access releases its lock to the daemon 
transaction on commit as its &em are not 
going to be hscarded in case of abom at 
higher level or system crash. In case of a 
transaction abort in the hierarchy of daemon 
transactions, its lock is released entirely. The 
daemon transaction releases its lock according 
to its associated transaction. 

Formally, we have the following 
locking rules : 
1. A read access can acquire a read-lock only if 
the prewrite-lock and write-lock on the 
corresponding DM is retained by its ancestor 
transaction. 
2. A prewrite access subtransaction can get its 
respective prewrite-lock only if the prewrite-, 
write- and read-locks are retained by its 
ancestor transactions. 
3. A write access transaction can get its 
write-lock only if read-, prewrite-, write-locks 
are held by its ancestors. 
4. A transfer access can get a read-lock only if 
the write-lock is held by its ancestors. Note 
that this rule is similar to rule 1. 
5 .  When a read access subtransaction commits, 
it releases its lock to its parent. When its 
parent commits, it passes the lock to its parent 
and so on. 
6. When a transfer access transaction commits, 
it passes its lock to the daemon transaction. 
When a daemon commits, it passes its lock 
according to its associated transaction. 
7. When a prewrite access commits, it passes 
its lock to its parent. When its parent commits 
(prewrite-RM), it passes the lock to the least 
common ancestor of all other access 
descendants waiting for the lock. 
8. When a write access transaction commits, it 
releases its lock to the least common ancestor 
of all other access descendants waiting for the 
lock. 
9. When a write access or prewrite-RM or any 
of its ancestor transaction aborts, the aborted 
transaction's locks are passed to its parent 
transaction. 

10. When a read-only transaction aborts, its 
lock is released entirely. When a transaction in 
the hierarchy of daemon transaction aborts, its 
lock is released entirely. 

4 Conclusion 

In this paper, we have presented a concurrency 
control algorithm for an opne and safe nested 
transaction model. Our algorithm increases 
concurrency as compmd to other models as it 
allows early release of locks by some 
subtransactions. We have introduced prewrite 
operations in our model to increases the 
concurrency and to avoid undo actions on 
transaction aborts. We are in the process d 
proving the correctness of th~s algorithm using 
110 automaton model. 
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