Computer assisted teaching of steel design

Wendelin Henry Mueller III

Follow this and additional works at: http://scholarsmine.mst.edu/doctoral_dissertations

Part of the Civil Engineering Commons

Department: Civil, Architectural and Environmental Engineering

Recommended Citation

This Dissertation - Open Access is brought to you for free and open access by the Student Research & Creative Works at Scholars' Mine. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
COMPUTER ASSISTED TEACHING
OF
STEEL DESIGN
by
WENDELIN HENRY MUELLER, III, 1941–
A DISSERTATION
Presented to the Faculty of the Graduate School of the
UNIVERSITY OF MISSOURI-ROLLA
In Partial Fulfillment of the Requirements for the Degree
DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEERING
1972

Oktay Ural
Advisor
W. A. Andrews
Myron S. Passy
Joseph V. Sonne
John L. Best
Wei Shun Yu
This thesis has been prepared in the style utilized for publications of the American Society of Civil Engineers. Pages 1-38 will be presented for publication. Appendices II through IV have been added for a more detailed description of the thesis work.
ABSTRACT

A method for use in creating a university level course is presented. The specifics of each of the steps is given in general terms to allow its application to as many different topics as possible. This method is then specifically applied in the formation of a fundamental steel design course using the American Institute of Steel Construction Specification. The reasoning utilized in each phase of development is documented. A lecture style presentation complemented by a series of student oriented computer programs was chosen for use. The details of the course material in outline form is given along with the computer programs written for an IBM 2741 terminal.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>A GENERAL PROCEDURE FOR COURSE DEVELOPMENT</td>
<td>3</td>
</tr>
<tr>
<td>COURSE OBJECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>COURSE CONTENT</td>
<td>4</td>
</tr>
<tr>
<td>COURSE STRATEGY</td>
<td>4</td>
</tr>
<tr>
<td>DEVELOPMENT OF THE METHOD OF PRESENTATION</td>
<td>5</td>
</tr>
<tr>
<td>APPLICATION OF THE GENERAL DEVELOPMENT PROCEDURE TO A STRUCTURAL STEEL</td>
<td>8</td>
</tr>
<tr>
<td>STEEL DESIGN COURSE</td>
<td></td>
</tr>
<tr>
<td>COURSE OBJECTIVES</td>
<td></td>
</tr>
<tr>
<td>COURSE CONTENT AND STRATEGY OF THE STRUCTURAL STEEL DESIGN COURSE</td>
<td>12</td>
</tr>
<tr>
<td>DEVELOPMENT OF THE METHOD OF PRESENTATION FOR A STRUCTURAL STEEL</td>
<td>25</td>
</tr>
<tr>
<td>DESIGN COURSE</td>
<td></td>
</tr>
<tr>
<td>SUGGESTED METHOD OF USE</td>
<td>32</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>35</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>37</td>
</tr>
<tr>
<td>APPENDIX I.-REFERENCES</td>
<td>38</td>
</tr>
<tr>
<td>VITA</td>
<td>39</td>
</tr>
<tr>
<td>ADDITIONAL APPENDICES</td>
<td></td>
</tr>
<tr>
<td>APPENDIX II.-LECTURE OUTLINES</td>
<td>40</td>
</tr>
<tr>
<td>APPENDIX III.-DECISION CHARTS</td>
<td>57</td>
</tr>
<tr>
<td>APPENDIX IV.-PROGRAM DOCUMENTATION AND LISTINGS</td>
<td>72</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figures</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Organization of Course Units</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Objectives of a Fundamental Structural Steel Design Course</td>
<td>11</td>
</tr>
<tr>
<td>3.</td>
<td>Organizational Chart of a Computer Assisted Instruction Course</td>
<td>15</td>
</tr>
<tr>
<td>4.</td>
<td>Design Project</td>
<td>20</td>
</tr>
<tr>
<td>5.</td>
<td>Organizational Chart of a Teacher Administered Course with Computer Support</td>
<td>22</td>
</tr>
<tr>
<td>6.</td>
<td>Goals of the Programs in Presenting Specific Topics</td>
<td>30</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Minimum Topical Outline</td>
<td>18</td>
</tr>
</tbody>
</table>
COMPUTER ASSISTED TEACHING
OF STEEL DESIGN

By Wendelin H. Mueller, III

INTRODUCTION

During the past decade, the amount and complexity of the material presented in structural design courses has been steadily on the increase. This is due, primarily, to more sophisticated design techniques being related to the various industrial codes and specifications. Along with this increase in material, the universities have been decreasing the number of credit hours allotted to teaching design. This situation initiated the idea of using the computer, as a teaching aid, to improve the presentation of steel design.

It is proposed to develop a series of student-oriented computer programs whose purpose would be to assist in teaching steel design. The programs would be in a conversational mode in order to obtain an interaction between the student and the computer as the design process unfolds. The use of the computer is suggested, principally, because of its potential in relieving the student of time-consuming, tedious arithmetical calculations, and its ability to monitor the student's design decisions. If this potential could be realized, the course material could be presented more efficiently in less class time.

1Graduate Student, Dept. of Civ. Engrg., Univ. of Missouri-Rolla, Rolla, MO
In the initial stage of the study, it became apparent that the successful use of the proposed computer programs would depend upon the total course being structured around their use. It is therefore decided that a total structural steel design course would be created. This course would focus on the utilization of student-oriented computer programs, operating on a time sharing computer system. Before work began on the details of the study, it was found necessary to formulate a general procedure which could be followed. This procedure outlined four basic steps necessary for the creation of any course. These are:

1. Establishment of the course objectives.
2. Decision as to the specific course content.
3. Formation of the course strategy.
4. Preparation of the method of presentation.

The details of each of these steps are made general to allow their application to other courses.

After the general procedure is established, it is then specifically applied in originating a fundamental steel design course. Each step is thoroughly documented in order to give a broad understanding of the reasoning applied in making the many required decisions. This will be of value to others who may be involved in developing similar courses. In addition, it gives teachers who use this version of the steel design course the necessary background to understand the overall philosophy which was applied. This will aid him in tailoring the course to his own individual manner of presentation.
A GENERAL PROCEDURE FOR COURSE DEVELOPMENT

The first step in the project is to define explicitly a general procedure which could be used to develop a university level course. Once defined, this procedure is then applied specifically to the development of a fundamental steel design course.

Course Objectives.-In developing a course, one must first define what goals are to be achieved by teaching the course. These goals are the course objectives. There are two basic categories of course objectives—overall objectives and performance objectives (7).²

Overall objectives are those concerned with the transfer of knowledge to the student, knowledge which will help the student in his intellectual processes of reasoning and judgement. These objectives give to the student the kind of knowledge which is applicable outside the immediate realm of the course. Their purpose is to develop in the mind of the student a more mature thought process. An example of this category of objective is training the student to think analytically by teaching mathematics. The overall objectives of a course must also integrate the new knowledge being presented to the student with that which he has previously acquired (7).

Performance objectives are concerned with the specifics of the course content. The outcome sought is the acquisition and retention of information. Performance objectives involve the intellectual capacity of memory, and the student's ability to form associations. Memory allows for the retention of material. Association is involved

²Numerals in parentheses refer to corresponding items in APPENDIX I.-REFERENCES.
in the direct application of the knowledge and the extension of the
knowledge by recognition of relationships between ideas and experiences.

Course Content.—The next step in creating a course is to decide on the
topics to be included in the course content. The purpose of the course
content is to serve as a vehicle through which the course objectives
can be met. This vehicle is guided by a strategy called the course
strategy. Because of their interdependence, the formation of the
course content and course strategy will occur simultaneously.

A valid first step in the development of the course content is
to establish the minimum number of topics to be covered in the course.
These topics are then used as a foundation on which to establish the
final course content. As the strategy of the course evolves, the
topics are expanded as required to furnish enough material to meet the
course objectives. This approach guarantees the inclusion of the set
of minimum number of topics in the course content. It also guides the
development towards **streamlined** courses, that is, one in which the
subject matter blends together without cumbersome topics included only
to teach one specific concept.

During the establishment of the set of minimum topics, care must
be taken to include sufficient material to make the course useful,
yet keep the number limited. This allows enough time to be spent on
each, insuring adequate coverage.

Course Strategy.—The purpose of the course strategy is to guarantee
that the objectives of the course are achieved. It does this by
acting as a control unit of the course, forming the connection between
the course content and the student. As the control unit, the course
strategy decides the order and method of presenting the course content. By proper choice of the order of presentation, the course strategy forms a smooth transition from topic to topic. In so doing, the overall objective of connecting knowledge already acquired by the student, to that being presented, can begin to be achieved. The order of presentation must also insure that the material being presented is in phase with that which the student requires. This will convey to the student a sense of organization and purpose in the material being presented (4).

The course strategy has the responsibility of deciding on the method of presenting course material. The method of presentation can be used to meet specific objectives of the course. Or, it may be used to save time in order to give the opportunity to cover more material or meet other course objectives. In any case, care must be taken to choose one which complements the learning process of the students being taught. Learning, being an activity of the mind, depends not only on the material being presented but also on the way in which the mind of the student responds to the extrinsic agent presenting the material (4).

Development of the Method of Presentation.—In course development, the course strategy is the planning stage; while the development of the specific method of presentation is the production stage. The specifications of the media are made decisive by the course strategy. The media must meet or exceed these specifications in order for the course to accomplish its objectives. This phase of course development also has the responsibility of documenting the various methods of presentation in a way which is acceptable by all potential teachers of the course.
This acceptability implies that the presentation be easily understood and simple to use. To accomplish this, it must utilize the technical language of the potential teacher, thus avoiding specialized terms from other technological fields which may have been applied while developing a certain medium of presentation.

The documentation must also allow flexibility in its use. It must guide the instructor during his teaching of the course, giving him the methods of presentation and their guidelines, as set forth in the course strategy. Only in this way is the teacher allowed to interject his personality into the course presentation. This pliability will enhance the final delivery of the course material to the student.
Course Content

Course Strategy
(Action is governed by the Course Objectives.)

Media

Student

Figure 1. Organization of Course Units.
APPLICATION OF THE GENERAL DEVELOPMENT PROCEDURE
TO
A STRUCTURAL STEEL DESIGN COURSE

Using the structural steel design course for a test of the general development procedure has distinct advantages. It is a typical course taken by the undergraduate civil engineering student. Its overall purpose is to teach the fundamentals of structural steel design using the American Institute of Steel Construction's (AISC) Specification (1). The general opinion was that if the use of the procedure was a success, it would verify its usefulness in developing other courses.

Objectives of the Structural Steel Design Course - The position and the aim of the course in the educational chain of the student must be a primary consideration when choosing its objectives. The steel design course is usually attended by the student shortly after completion of his required structural analysis courses. It may be his first encounter with formal design and/or specifically steel design. After completion, he may either proceed to advanced courses or graduate with a B.S. degree.

The position of the course thus established, the choice of objectives can be made. One objective which the course must meet is the teaching of the fundamentals of structural steel design. The details of these fundamentals are defined in the course content. Because of the proximity to graduation, after which the student will begin his professional career, a certain amount of professional development should occur during the course. This professional development will help in the transition from engineering student to engineering graduate. It
must convey to the student what structural design is and its place in an engineering design project. The course must supply at least a partial answer to the question of what engineering is, its implications and ramifications.

Many students taking the steel design course will end up working in other design fields. Because of this, another course objective must be to teach steel design in such a way as to be applicable in other fields. To do this a design philosophy must be taught. This philosophy must communicate to the student that design consists of deciding the requirements of the object being designed, choosing a specific shape and size to meet these requirements and finally insuring that the object fits into and acts in harmony with the total system (2).

When this objective is specifically applied to steel design it means that the student must understand the relationship of design to structural analysis. He must acquire the knowledge and skill to choose economical members to resist loads. He must also be able to fit together the different members of a structure and make it act as an unit. The place of specifications and codes in design must also be understood. This philosophy of design is not communicated to the student in one lecture or by one problem. It is taught explicitly and implicitly over a period of time. Depending upon the approach taken by the instructor it may take as little as a few weeks or as long as the total time of the course. Any formal course must fit into the student's educational development in such a way as to form a smooth transition between the knowledge he has already attained and that which
he will acquire in the future. This starts the student from a position of knowledge about the subject and leads him into new material with a sense of confidence. Enough course material must be presented to insure that the student will begin learning advanced material from a similar position of knowledge about the subject. A fundamental steel design course must form this transition between structural analysis and advanced design. The advanced design could be done either in future courses and/or in professional practice. In every field of design the experience gained by working problems is very valuable. The experience helps him obtain the correct solution in a shorter period of time. It also gives him a "professional intuition" for the correct solution, which is useful in checking the overall correctness of a design project.

In the professional practice related to steel design, experience ranks in importance with knowledge of the fundamentals. Only with experience can an engineer acquire an instinct for accuracy and economy. Because of the importance of experience in steel design, another objective of this course is to begin the process of building a background of design experience. Figure 2 presents a summary of the objectives of the course along with its position in the educational life of the student.

It is recognized that in general the objectives of this course will overlap those of other courses. The responsibilities assumed in the development of this course concern only those objectives directly or closely associated with steel design.
Figure 2. Objectives of a Fundamental Structural Steel Design Course.
Course Content and Strategy of the Structural Steel Design Course -

As with most courses taught at the university level, there is a limit on the amount of time allocated to teach steel design. The University of Missouri-Rolla classifies the fundamental structural steel design course as a three semester credit hour course. The classroom format is two fifty minute lecture periods and one three hour problem laboratory period per week. On an average, there would be thirty lecture and sixteen laboratory periods in a semester. To accomplish the objectives of teaching structural steel design, in the allocated time, it is necessary to use an efficient method of presenting the course material. This need for efficiency, coupled with the fact that steel design is basically a problem oriented course, suggested the use of some form of Computer Assisted Instruction (CAI)(6,8,13).

Investigation of what previously had been done in CAI revealed two facts:

First, a complete CAI course was impossible to develop under the constraints imposed on the project.

Second, it was undesirable to teach steel design using strictly the CAI technique.

To develop a complete CAI course it has been estimated that the time required would be five years (13). This implies that material for CAI presentation must be stable over a long period of time. The structural steel design course centers on the use of the American
Institute of Steel Construction's Specification. Because of new developments in analysis techniques and material properties, this specification periodically changes. The average life of the last four adopted specifications is six years. The present AISC Specification was adopted in 1969. Assuming a six year life span of the Specification and a four year development period, the results of the project would be completed at a time when a major change to the Specification is imminent.

The resources available for the project precluded the development of a total CAI course. There are two major costs in the development of a CAI course: manpower and hardware.

According to the United States Civil Service Commission Bureau of Training, (1971, p. 5) "...a team of individuals is required [to develop CAI] consisting of: author, instructional programmer, audiovisual expert and behavior scientist, among others." (13)

Since these different types of individuals were not directly connected with the project, they could only be made available by recruiting them on a full or part time basis. This would have required a large expenditure of funds for salaries, which was just not available. Along with this large expenditure for manpower, developing a CAI course requires large investments in hardware.

A steel design course could be taught around the American Association of State Highway Officials (AASHO), American Iron and Steel Institute (AISI) or any other such specification. The specification is a vehicle to unite material behavior with guarantees of reasonable safety margins to the public. It is minimal protection but not prohibitive to initiative. AISC was chosen for use at the University of Missouri-Rolla because it is the specification under which the largest tonnage of hot rolled steel is designed.
The United States Civil Service Commission
Bureau of Training, states that (1971, p. 17)
"...the computer, $6500 per month rental for
an IBM 1800 computer and peripherals...Termin-
als, $7500 per month rental for 25 terminals." (13)

This does not include salaries for any of the required operating
personnel. Hardware or money to obtain it was not available to be
used in teaching structural steel design.

CAI is basically the use of the computer in a highly individualized
and interactive tutorial system. The computer is programmed to present
the course material to the student by means of a terminal device, such
as, a teletype, cathode-ray tube or IBM 2741 terminal. After presenta-
tion, the student is questioned to determine whether or not he has
acquired enough knowledge to proceed. If he has, new information is
presented; if not, he is directed to material specifically designed
to remedy the particular mistake made. If the student still does not
learn, he is given additional information. This whole procedure is
continued throughout the presentation of the course material.

The computer may be programmed to assign homework based on the
student's needs. These needs being established by monitoring the
trainee's response in the various drill sessions directed by the
computer. These may also serve in directing the student to other
instructional devices, such as audio tape, video tape, and models.

Figure 3 shows the general organizational chart of a CAI course. It
illustrates how the computer takes sole responsibility for the presenta-
tion of material. The effect of this responsibility is to have a
course with individualization of instruction (13). This is often
cited as the main advantage of CAI.
Figure 3. Organizational Chart of a Computer Assisted Instruction Course.
In presenting the disadvantages of CAI, the United States Service Commission Bureau of Training alludes to one which becomes obvious only when considering a specific subject (13).

They state (1971, p. 5)
"...It is known by people who work in the field that CAI is not appropriate for all types of subject matter, ...certain types of strategies, and obviously that subject matter which is seemingly dependent on those strategies for effective presentation are overly ambitious."

The logical means of presenting the course material in structural steel design is to use a professional designer. He can convey much of the skill needed to be a designer indirectly through his manner of presentation. As he teaches and works problems for the class, the student can observe the design procedure in detail. A procedure in which the final choice of a member is most important; the mathematics being used only guides the designer to this final choice. Through the instructor's presentation, the student can learn the parts played by safety, economy and practicality in designing, attributes of a design as important as the numbers calculated to justify the adequacy of the member. A professional manner of presenting calculations and communicating the final results, can also be taught in this way.

This is not to say that CAI could not accomplish the same objectives. However, it is believed that development of this type of CAI course would be an ambitious project, and still would not be as effective as one which depended upon a professional designer for its presentation. Thus, the decision was made to form the structural steel design course around the presentation of course material through a series of lectures by a professional designer. Although at this stage of
development CAI had been eliminated, the use of the computer was still very much under consideration.

The overall strategy indicated that a Teacher Administered Instruction Course (TAI) would be the best approach to teaching steel design. The next step was to establish whether or not a TAI course could meet all the course objectives.

The minimum topics, as established by the University of Missouri-Rolla, are presented in Table 1. These are the topics which currently must be taught in order to give to the student the fundamentals of steel design. Teaching these topics fulfills the first objective of the course. Using the TAI approach and these fundamentals, professional development within the student can also be achieved. The instructor can accomplish this directly or indirectly through his presentation of course material. The most important thing concerning this goal is that the teacher be aware that it is a course objective. He can achieve it in his own manner, drawing on example problems, personal experiences and direct discussion. Professional development will also be instilled in the student by the direct contact with a person in the profession, which the use of TAI guarantees. Developing within the student practical experience in steel design can only be achieved by working problems. These problems may consist of single member design problems or parametric studies. In any case the fundamentals as outlined in Table 1 will suffice.

Forming a connection between previous education and future knowledge can be accomplished using the fundamentals. If the instructor is aware of this objective, he can accomplish it by simply beginning
Table 1. Minimum Topical Outline

1. Introduction on structural design in metals.
2. Mechanical properties of structural metals.
3. Design of tension members.
4. Design of compression members.
5. Design of beams—laterally supported and unsupported.
7. Design of connections (riveted, welded and bolted).
8. Design of built-up members.
10. Introduction to the computer aided design with available programs.
each new topic from an area of knowledge familiar to the student. For example, beam design can be easily introduced by a short discussion of beam analysis. The results of the analysis are then used in the design.

Structuring the connection between the knowledge being taught and that which the student will acquire later is achieved if the fundamentals of steel design are taught. From these fundamentals the student can advance to more sophisticated design problems, either via advanced courses or self study.

The last objective which must be considered is teaching a design philosophy which has application in other fields. A part of this objective can be achieved by teaching the fundamentals as outlined in Table 1. These can be used to explain the purpose of codes and specifications; and to teach the student the part of design in which a member or size of structure is chosen to meet some specified criteria.

This is only a part of design. Total design must include the fitting together of the different pieces into a total system which behaves as a unit. Teaching the fundamentals cannot convey this to the student. They must be expanded to include projects which serve as a vehicle to communicate total design philosophy to the student. An example of such a project is given in Figure 4. The student is given a structural configuration and asked to perform a complete design. He is responsible for establishing the design criteria, i.e., loads, performing the design and insuring that the members will act as a system, i.e., design connections. These basic steps in design are applicable to fields other than steel design. The design of a
Design a roof truss, simply supported by masonry walls, to span 30 ft. center to center bearing. Paragraph and page numbers refer to the AISC Manual of Steel Construction.

Given:

Distance between trusses - 30 ft.

Loads: Live Snow - 30 psf horizontal projection (Ref. p. 5-224).

Dead Truss - 5 psf Roof corrugated steel (Ref. p. 6-16).

Crane 12 ton capacity (Ref. par. 1.3.4).

Wind as required.

Specification: AISC

Members: Truss Double angles.

Purlins Channels.

Steel: A-36

Figure 4. Design Project.
footing, earth dam all follow the same basic philosophy.

Given enough time a teacher-administered steel design course can accomplish all of the stated objectives. However, unlimited time is not available. In order to accomplish the objectives of steel design in the allotted time, a strategy must be devised which will save class time.

In teaching steel design much of the material is presented by the instructor working problems. Different problems are used to emphasize different points in the AISC Specification. A large number of problems are usually worked to teach the variations which occur in design. If another method of presenting these problems could be developed, a real savings in class time would be achieved.

A computer terminal programmed in a conversational mode (12) is an excellent medium for presenting problems. It has the capability of allowing an interaction with the student during the solution of the problem and can be programmed to present the output in the format desired. To bring into the course the use of the computer terminal and retain the presentation by the instructor the course would have to be organized as shown in Figure 5. When comparing this to the CAI's organizational chart (Figure 3), one striking difference becomes apparent. In CAI, the instructor and the computer are put on the same level, with the computer solely responsible for the presentation of the material. In Figure 5, the computer has been made subject to the instructor and the amount of responsibility the computer receives is controlled by the instructor. Making this change has virtually eliminated the major advantage of CAI, i.e., individualization
Figure 5. Organizational Chart of a Teacher Administered Course with Computer Support.
of instruction, but has brought about an advantage of flexibility. The instructor being in charge can direct the course in such a way as to gain the most from each area of the course. Through the assignment of specifically formulated problems he can rely on the terminal to present some of the variations which occur in design. This will help him realize a savings in class time.

The two extremes which limit his manner of presentation are:

1) To teach the course as a lecture course, using the computer to aid the student in checking his hand solutions to the problems.

2) To give a minimum amount of presentation required to meet the course objectives and use the computer to fill in many of the details while the student uses it to work the homework.

What is needed is a series of computer programs which will present the problems in the same fashion as the instructor would in class. The programs would require as much input and as many decisions by the student as in a hand solution.

In most structural designs there are two types of errors. The first type is one of a misinterpretation of the mathematics of the design. The second is an error in the choice of specific member, i.e., the member chosen is not adequate. The first type of error, misinterpretation of the mathematics, will not be allowed by the computer programs. This is to eliminate any negative transfer of design experience to the student and to continually emphasize the correct procedure (7). This will more closely follow the philosophy
used by the instructor in presenting problems in class. The second type of error, the member not being adequate, will be allowed by the computer programs.

This will more closely follow the normal trial and error procedure of design. Since misinterpretation of the AISC Specification is not permitted by the programs, reasons for each of the steps will be given. This will be handled in the output format.

Hayman and Lord point out the principal disadvantage when using the TAI technique in teaching. (1972, p. 2) "One difficulty with this approach (TAI) is that the main learning resource -- the classroom lecture -- is always out of phase with personal problems that occur in the student's attempts to perform the terminal objective activities. When problems occur, he must wait for the next offering of his primary resource to resolve them; even then, there is competition for recognition of personal problems. If we are interested in efficiency, from the learner's point of view, this situation is hardly ideal." (3)

The format of the output produced by the terminal will attempt to minimize this disadvantage by including reasons for the various calculations. To further minimize this disadvantage, a series of decision charts are developed. Their purpose is to give to the student a concise description of the calculations and decisions required in working a design problem. These will answer many of the questions which will occur during the students' attempt to work homework. The individual instructor can apply a strategy which will further reduce this disadvantage by alloting class time when the students are allowed to work homework and he is available to give immediate answers to their questions. This class time is freed by the proper use of the computer programs in supplementing the instructor's
At this point, a summary of the strategy developed in the above paragraphs is warranted. A teacher administered course with computer support (TAI/CS) is being introduced. In it, the advantages of TAI and the use of the computer are amplified, while the disadvantages are minimized.

As shown in Figure 5, the responsibility for presenting the course material to the students is the responsibility of the instructor. He accomplishes this via the lectures and the assignment of specific problems to be worked by the students using the computer. Using his lectures he accomplishes the objectives of professional development and the formation of a connection between knowledge previously acquired by the student and that being taught. The lectures and the specially assigned homework are used to teach the fundamentals of steel design and begin to convey to the student the philosophy of design. The decision charts which accompany each program will answer many of the questions about the AISC Specification as they arise. Additional homework is assigned to generate design experience within the student. And finally, the special projects are used to complete teaching the overall philosophy of design and to give additional experience in steel design.

Development of the Method of Presentation for a Structural Steel Design Course - The overall strategy defined in the previous paragraphs laid out the specifications for a lecture type presentation, supplemented by a series of conversational computer programs with supporting decision charts. One of the primary considerations of
this phase of development is to make the presentation acceptable to as many potential users as possible. To do this the presentation must communicate exactly what is required, leaving the details, which do not effect the goals of the course, up to the individual instructor.

The lecture portion of the course may be presented in different forms. The text book is a form of presentation which has been widely used in teaching. Its chief advantage is that the text can be used by both the teacher and the student as a mutual source of information. Lecture notes may also be used as a means of presentation of course content. These are sometimes reproduced and given to the student to serve as a text for the course. Both the lecture notes and the published text are excellent means of presentation of course content. They convey the course content in the exact order and precise wording of the author. This exactness, however, may be a disadvantage if the instructor of a course has a different opinion as to the best order and wording of the content. This may cause him to appear in conflict with the book while placing emphasis on other topics. It may force him to teach in a manner which is not familiar to him. Using more than one media to present the course material amplifies the disadvantages of the exactness of texts and lecture notes. Presenting the course content in the form of a topical outline minimizes this problem. The wording and emphasis is left completely up to the instructor. If the outline is set up into individual independent modules, the order of presentation is flexible.

A cross-reference of the computer programs and decision charts, included in these outlines, will assist the instructor in using them
to supplement his lectures. It is anticipated that the use of the
topical outlines will require some work by the instructor in completing
the details of the lecture. This amount of work will be small when
compared with starting without them to prepare a lecture. Once an
instructor has taught steel design, he will have compiled from these
outlines, a series of custom lecture notes. He will feel comfortable
teaching from these because he developed them. The outlines will have
served only as a guide in the developing process. These lecture
outlines are presented in Appendix II of Reference 10.

The strategy of the course required a set of computer programs
to be used to save class time. They are to accomplish this by
complementing the instructor's lectures through the assignment of
specific problems to be worked by the students using the computer.
To supplement the lecture, the programs must work the problem as
the instructor would in class, printing the reasons for each step,
requiring the same input and decisions. Through the use of these
special problems the instructor can present new material and/or assign
problems which will review material already presented.

The purpose of this phase of development is to write the necessary
programs to the specification outlines by the course strategy. The
computer access terminal chosen for use was an IBM 2741; the program-
m ing language is CPS-PL/I (5). It was chosen primarily because it
is relatively inexpensive and available on campus. While writing
the programs to meet the specifications of the course strategy,
additional possible benefits of the programs began to appear. These
tended to make the programs exceed the requirements set down for them.
This increased the programs' chances for success in accomplishing the savings in class time and were therefore included wherever possible.

The advantage of reviewing material already presented is amplified by the programs presenting a summary of important points before the mathematical analysis of the problem begins. In this manner the students are taught by repetition, hearing the presentation in class, and then reading a summary of that presentation when working homework.

In steel design there exist many short cuts in the calculations made possible by tables and parameters readily available to the engineer. An example of one such parameter is L_c. This is the length of unbraced compression flange at which a reduction in allowable stress is required because of lateral-torsional buckling. To be effective, the programs use these type parameters. However, their use comes after the student understands exactly what they are. This requires the program to begin by performing every step of design, printing the reasons and the results. As the student progresses to more advanced problems, these short cut parameters are introduced. Only in this fashion can the programs truly act as a supplement to the lecture.

The above requirements lead to a type of program which is inefficient in its execution because of the many output titles and its interaction with the user. Once the user is familiar with the detailed calculations involved in the many equations used in design, these programs would be considered cumbersome. Because of this, it was decided to develop a second type of program. These programs efficiently
perform the design calculations, printing only enough information to help understand the answer and requiring only the minimum interaction with the user. The purpose of this second type of program is to save the student's time while working the specifically assigned homework which begins to form within him some design experience. Included in this type is a student-oriented structural analysis program which uses the direct element method to solve rigid frames, beams and trusses (9,11). Its purpose is to relieve the student time consuming hand calculations required in the special project problems.

The use of the IBM 2741 terminal will in all likelihood be new to the students enrolled in the course. To minimize the amount of time required to teach the use of the terminal, the programs begin with an explanation of their use. To further minimize the amount of explanation required before execution of the programs, they are written to cover the subject matter in a manner which starts the student with a short, easy-to-use program. After the student gains confidence in the use of the terminal, the longer and more complex programs are assigned. In this fashion, the student is gradually introduced to the use of the computer.

The basic topics in fundamental steel design are tension and compression members, beams and members subjected to combined stresses. To gain the most from the programs, it is suggested that the subjects be covered in the order stated above. Figure 6 shows the specific goals of the programs involved in teaching each topic. Equally as important as this development is the method of presenting these programs to the instructor. The purpose of the programs is to save
Figure 6. Goals of the Programs in Presenting Specific Topics.
time by supplementing the lecture. Therefore, the lecture outlines
must clearly state the areas where the programs can be used. The
final choice as to how much they are used is left up to the instructor.
To assist him in his decision, an overall flow chart is included which
describes, in engineering terminology, the purpose of the program.
The flow chart defines the goals of the programs, their limitations,
and the required information for their execution. A detailed flow
chart and listing of the programs are also developed. Their purpose
is to help in modifying or extending the programs. This documenta­
tion is given in Appendix IV of Reference 10.

The last item to be developed was the decision charts which are
to be used by the student while working homework problems. These
decision charts present the logic of the AISC Specification. This
logic is the same one followed by the programs in the solution of
problems. It was decided to use a flow chart format for the presenta­
tion of the decision charts. The terminology used was that of the
AISC Specification with no reference to the programs. This approach
makes them equally applicable in answering questions concerning the
hand solutions to problems presented in class by the instructor.
These are found in Appendix III of Reference 10.
SUGGESTED METHOD OF USE

The steel design course developed during this project is rather flexible. There are procedures which slightly limit this flexibility but by following them the instructor can amplify the advantages in using this method of teaching.

As shown in Figure 6, the student is gradually introduced to the use of the terminal and the concepts of steel design, if the following order of presentation of topics is used:

- Design of tension members.
- Design of compression members.
- Design of bending members.
- Design of members subjected to combined stresses.

This order of presentation insures that at any one point only one new concept is introduced by the programs. For example, when proceeding from the compression program to bending programs, the student has used the trial and error design procedure and is already familiar with the use of the terminal. In the bending programs he is introduced to the use of short cuts in design for the first time. By this gradual introduction to new material, the programs will help the instructor to be more effective in teaching because he is concerned with only one new concept at any one time.

The time to teach topics such as connections, base plates and built-up members is flexible. The only requirement is that the student have enough knowledge to understand the purpose of the material in these topics. This requirement is no different than that imposed
in a normal TAI course. However, the most effective time to present these type of topics is while the student is involved with designing the special projects. At this time he will begin to see the importance of the details in design required to have the structure act as an unit. If this procedure is followed, it is suggested that one half of the semester be used to teach the fundamentals of member design. The balance of the semester can then be spent teaching topics such as connections, base plates and built-up members.

A weekly problem session is an excellent means to be used in fulfilling the objective of professional development. During these sessions, exchange between student and teacher in the form of question and answers and/or discussions should be encouraged.

To accomplish the objectives of the course three types of homework will be assigned. The first, requiring a longhand solution, is necessary for the student to become familiar with the details of the theoretical approach to design. The second, using the computer for the solution, will accomplish the savings in class time by supplementing the lecture. The third, using the computer and/or hand solution, will be problem assignments to give the student design experience. The student should be told the specific purpose of each problem assigned. Only when he is aware of the purpose of a problem can the student be expected to work it in a manner which obtains the desired learning results (4).

The chief difficulty with a Teacher Administered Course is that the main learning resource -- the lecture -- is out of phase with the problems that occur during the students' attempt to apply the material
in working homework (3). The use of the problem sessions helps to minimize this disadvantage. It is further reduced by the decision charts covering the various sections of the AISC Specifications. These should answer many of the questions which arise while working homework assignments.

The number of terminals required to teach steel design using this TAI/CS approach depends on how much the instructor decides to use the computer. A general rule to follow in estimating the number necessary is to have enough for convenient use while working homework required to supplement the lecture. Only when the pressure, of trying to "get on" a terminal and "get off" in time to allow others to use it, is relieved can a student be expected to use the programs to learn. If this pressure exists, the tendency is to complete the homework as fast as possible with little thought as to the what and why of design.
SUMMARY AND CONCLUSIONS

One of the products of this research was a formulation of a method which could be used to create a university level course. It defined four basic steps and outlined the specifics which should be considered. The formulation was purposely made general to facilitate application to a variety of courses. Although none of the steps taken individually is particularly informative, the group taken in its entirety and stated in detail is of significant importance. It puts in chronological order a thorough process which can be used in creating a well constructed course. If such a process was applied to all courses taught, a better university educational system would result. Although the initial cost appears high, it is believed that it would be justified by others using the product of this developmental work and by the improved results. This development procedure was applied to a fundamental steel design course at the University of Missouri-Rolla. Its personal cost was approximately two thirds of a man year. This is not to say that all courses would take this amount of time. It is given only as a benchmark from which to work.

In the application of the method of development to structural steel design it was opted to use a Teacher Administered Course with Computer support (TAI/CS) as opposed to a Computer-Assisted Instruction (CAI) approach. This decision was based on the need to obtain advantages from both the TAI and CAI approach to teaching. From TAI, the advantages of the lecture presentation by a professional designer along with his personal contact with the student was used. From CAI
was taken the advantage of saving class time through the use of the computer. Along with these advantages come certain disadvantages. The problem of the lecture being out of phase with the student's problems was brought about by using TAI. The disadvantage of additional cost was caused by using the computer. An attempt was made to capitalize on the advantages and minimize the disadvantages of each.

When creating a course in which different methods of teaching are being considered, it is important to study thoroughly the advantages and disadvantages of each. In this study it would have been easy to eliminate the traditional method of teaching, i.e., TAI, based on its disadvantages without considering its benefits. A deeper study revealed that the lecture presentation was the most natural means of meeting some of the course objectives. When the fulfillment of the course objectives require the use of more than one teaching method, serious consideration should be given to the use of a combination of methods. This is what resulted from this project, i.e., the use of the computer to teach (CAI) was combined with the traditional lecture presentation and produced Teacher Administered Instruction with Computer Support (TAI/CS).
ACKNOWLEDGEMENTS

This paper is based in part on a thesis by Wendelin H. Mueller, III presented to the Civil Engineering Department of the University of Missouri-Rolla at Rolla, Missouri, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Thanks are extended to my thesis advisor, Oktay Ural, Associate Professor of Civil Engineering, Joseph H. Senne, Chairman of the Department of Civil Engineering, and to William Andrews, Professor of the Department of Civil Engineering, for their valuable suggestions and continued encouragement during this work. Acknowledgements are made to David Dearth and Michael Martin of the Department of Computer Science, University of Missouri-Rolla, for their help with the computer programming. Appreciation is also extended to the American Institute of Steel Construction, Inc. (AISC) for a Fellowship during a portion of my studies.
APPENDIX I.-REFERENCES

VITA

Wendelin H. Mueller, III was born on February 12, 1941, in St. Louis, Missouri. He received his secondary education from Christian Brother's College, Clayton, Missouri. He received a Bachelor of Science degree in Civil Engineering from St. Louis University, St. Louis, Missouri in 1962. From June 1962 to June 1963 he was a trainee for the U.S. Army Corps of Engineers, St. Louis District. Then from June 1963 to August 1965 he had a structural engineer position with the U.S. Army Corps of Engineers, St. Louis District. While teaching as a graduate student he received a Master of Science degree in Civil Engineering from the University of Missouri-Rolla, Rolla, Missouri in August 1966. From September 1966 to May 1968 he was a research engineer for Boeing Airplane Company, Seattle, Washington. Beginning in May 1968 to September 1969 he was a structural engineer and programmer at National Computer Service, Company, Incorporated, St. Ann, Missouri.

While teaching as a half time instructor, he has been enrolled in the Graduate School of the University of Missouri-Rolla since September 1969 and held the (AISC) American Institute of Steel Construction Fellowship from September 1971 to June 1972.
APPENDIX II.-LECTURE OUTLINES

Presented in this appendix is a series of lecture outlines in modular form whose purpose is to assist the instructor in using effectively the total structural steel design course developed in this project. It is suggested that these topical outlines be used as a basis for developing a set of custom lecture notes by each instructor of the course.

The names of the applicable programs are given in the beginning of each module. A reference to the program's name within the outline indicates that that particular topic is reviewed via a discussion printed by the program. Also referenced within the outline are the applicable decision charts which are presented in Appendix III. Following the lecture outlines are examples of suggested design projects.
Introduction to the Course

Purpose: To communicate to the student the format of the course.

Applicable Programs: none

I. Computer use
 A. Purpose
 1. Homework
 2. Lecture
 B. Terminal
 1. Time and place available
 2. Priority for use

II. Class time
 A. 50 minute lecture period
 B. 3 hour laboratory period

III. Grades
 A. Tests
 B. Homework
 C. Additional credit
Terminal Use

Purpose: To convey to the student enough information to use the computer programs.

Applicable Programs: none

I. Activating the terminal
 A. ON-OFF switch
 B. LCL-COM switch
 C. Acoustic coupler

II. Connecting with the computer
 A. Phone number
 B. Answer indication
 C. Phone connection to the acoustic coupler

III. Login procedure
 A. Login statement
 1. Account number
 2. Subaccount number
 B. Name statement
 C. Check digit

IV. Load statement
 A. Program name
 B. Key

V. XEQ statement

VI. Underscore response

VII. Potential problems
 A. Computer goes down
 B. Fatal error
Introduction on Structural Design in Metals

Purpose: To give to the student an overview of the course.

Applicable Programs: none

I. Design
 A. Structural designer
 B. Specifications
 C. Properties of a good design

II. Structural steel design
 A. Examples of application
 B. Advantages
 C. Disadvantages

III. Introduction to the Manual of Steel Construction
Purpose: To review the more important mechanical properties of the commonly used structural metals.

Applicable Programs: none

I. Hot rolled structural steel
 A. Stress-strain curve
 1. Modulus of elasticity
 2. Plastic plateau
 3. Strain hardening
 B. Rolled shapes

II. Cold formed structural steel
 A. Stress-strain curve
 B. Shapes
Design of Tension Members

Purpose: To teach the student the design of tension members via the use of the provisions of the AISC Specification.

Applicable Programs: TENTST and TENDSN

I. Types of tension members
 A. Trusses
 B. Frames (cross braces)
 C. Others

II. Tension stresses
 A. Equation for stress \(F = \frac{P}{A} \) TENTST
 B. Stress distribution

III. Provisions of the AISC Specification Decision Chart 1 TENTST
 A. Allowable tension stress (par. 1.5.1.1)
 B. Length limitation (par. 1.8.4)
 C. Reduced cross-section
 1. Size of holes (par. 1.14.5)
 2. Net section (par. 1.14.3)
Design of Compression Members

Purpose: To teach the student the design of compression members via the use of the provisions of the AICS Specification.

Applicable Programs: COLTST

I. Types of compression members
 A. Trusses
 B. Frames
 C. Others

II. Compression
 A. Equation for stress (F = P/A) COLTST
 B. Buckling
 1. Local
 2. Total
 3. Effective length
 C. Residual stresses

III. Provisions of the AISC Specification Decision Chart 2 COLTST
 A. Allowable compression stress (par. 1.5.1.3.1 and 1.5.1.3.2)
 B. Length limitations (par. 1.8.4)
 C. Width-thickness ratio (par. 1.9)
Design of Beams - Laterally Supported and Unsupported

Purpose: To teach the student the design of beams via the use of the provisions of the AISC Specification.

I. Types of beams

II. Bending stresses

A. Equation for stress \(F = \frac{M_0}{I} \) BENTST

B. Stress distribution

III. Provisions of the AISC Specification for strong axis bending

Decision Chart 3 BENTST

A. Allowable bending stress

1. Laterally supported compact members (par. 1.5.1.4.1)

2. Laterally supported partially compact members (par. 1.5.1.4.2)

3. Laterally unsupported members (par. 1.5.1.4.6)

Note: The design portion of BENTST defines \(F'y, F''y, L_c \) and \(L_u \) and makes use of the first two in the design of members.

B. Width-thickness ratios (par. 1.9)

IV. Provisions of the AISC Specification for weak axis bending

Decision Chart 4 (par. 1.5.1.4.3)
Design of Beam-columns

Purpose: To teach the student the design of combined stress members via the use of the provisions of the AISC Specification.

Applicable Programs: BIXDSN

I. Types of combined stress members
 A. Biaxial bending
 B. Beam-columns
 C. Biaxial bending and column action

II. General interaction equations BIXDSN
 A. Stress
 B. Moment
 C. Other

III. Provisions of the AISC Specification Decision Chart 5 BIXDSN
 A. Equation 1.6-1
 B. Equation 1.6-2
Design of Connections (riveted, welded and bolted)

Purpose: To teach the student the design of connections and other details via the use of the AISC Specification.

Applicable Programs: none

I. Types of connections (riveted, bolted and welded)
 A. Bending
 B. Tension
 C. Compression
 D. Advantages
 E. Disadvantages

II. Riveted connections
 A. Types of rivets (par. 1.5.2)
 B. Connections
 1. Shear
 2. Eccentric shear
 3. Shear and tension (par. 1.6.3)

III. Bolted connections
 A. Types of bolts (par. 1.5.2)
 B. Connections
 1. Shear
 a. Rigid
 b. Simirigid
 2. Shear and tension (par. 1.6.3)

IV. Welded connections
 A. Types of welds
 B. Connections
1. Shear

2. Shear and bending

V. Details of connections (par. 1.16 and 1.17)

VI. Base plates
Built-up Members

Purpose: To teach the student the design of built-up members via the use of the AISC Specification.

Applicable programs: none

I. Types of members
 A. Bridges
 1. Trusses
 2. Beams
 B. Buildings
 C. Advantages
 D. Disadvantages

II. Angle members
 A. Four angles
 B. Lacing

III. Cover plates
 A. Plate size
 B. Plate connection

IV. General discussion of plate girder design
Plastic Analysis and Design

Purpose: To introduce the student to plastic analysis and design of steel structures.

Applicable Programs: PLADSN

I. Overview of the philosophy behind plastic design PLADSN

II. Plastic analysis
 A. Plastic hinge PLADSN
 B. Collapse mechanism PLADSN
 C. Equilibrium method
 D. Virtual work method

III. Plastic design as per the AISC Specification PLADSN
 A. Beams
 B. Beam-columns
Introduction to Computer Aided Design with Available Programs

Purpose: To introduce the student to the use of commercially available computer programs.

Applicable Programs: none

I. Overview of the types of programs
 A. Member design
 B. System design with optimization

II. AISC programs

III. ICES-STRUDL
Design a roof truss, simply supported by masonry walls, to span 30 ft. center to center bearing. Paragraph and page numbers refer to the AISC Manual of Steel Construction.

Given:

Distance between trusses - 30 ft.

Loads:
- Live
- Snow - 30 psf horizontal projection (Ref. p. 5-224).
- Dead
- Truss - 5 psf
- Roof corrugated steel (Ref. p. 6-16).
- Crane
- 12 ton capacity (Ref. par. 1.3.4).
- Wind
- as required

Specification:
AISC

Members:
- Truss
 Double angles.
- Purlins
 Channels.

Steel:
A-36
A one lane bridge is to be built over the abutments of a dam. The function of the bridge is to support a traveling crane which will be used to lift generators housed in power plants at each side of the bridge.

The following information is given:

1. Three span continuous bridge
2. Span length 24 ft.
3. Loads: Live - crane (see sketch)
 Dead - as required (assume 8" slab)
4. W sections
5. Bolted connections
6. AISC Specification
7. A-36 steel

The following information is required:

1. Moment and shear envelope for the load positioned at 6' spaces.
2. Design all primary members.
3. Design the connections.
A garage for passengers cars is to be built in the following configuration.

The framing system is to be on 12 ft. centers. An external self-supporting elevator will be used to transfer the cars from the ground floor to the upper decks.

Given Loads:
- Live - BOCA 1970
- Dead - as required (assume 8" concrete slab)

Use:
- W sections
- Bolted connections
- AISC Specification
- A-36 steel

Assume:
- Uniform load distribution from slab to frame.
- Top flange laterally supported for B1, B2, and B3.

Find:
- Design the frame and the connections.
APPENDIX III.-DECISION CHARTS

In this appendix is presented a series of decision charts. These outline the logic of the AISC Specification applied in fundamental design problems. The specific topics which they include are: tension members, compression members, beams and members subjected to combined stresses. Each of these topics are covered using the AISC Specification's terminology. The nomenclature is also from the AISC Specification and is presented in this appendix.

The object of the decision charts is to present a road map of the AISC Specification. By following the decision charts, the student is led through the various paragraphs which apply in a specific design problem. All the required decisions are presented in the proper order.

The purpose of these decision charts in teaching steel design is to give the student a concise summary of the design procedures. They are to be used while working homework either by hand or using the computer. Through their use, the student will be able to obtain immediate answers to many of the questions which arise while working homework. This purpose of the decision chart should be thoroughly explained to the class.

When teaching steel design using the technique outlined in the body of this paper, it is suggested that these decisions charts be presented to each student. This can be done either by a blackboard presentation and/or copied and handed out in class.

DECISION CHART 1 This decision chart outlines the procedure for calculating the allowable tension force in a primary member. An account is made for the reduction in area due to rivet or bolt holes
and the chain of holes provision in the AISC Specification. The eighty five percent rule of Paragraph 1.14.3 is also checked. Knowledge of the slenderness ratio $\frac{\ell}{r}$, net area and gross area is required before this decision chart can be effectively used.

DECISION CHART 2 This decision chart outlines the procedure for calculating the allowable compression stress in a primary member. Knowledge of the slenderness ratio $\frac{K\ell}{r}$ and the provision of Section 1.9 is required for effective use of this decision chart. The member may not be fully effective in resisting the load as determined by Section 1.9. Therefore the application of the provisions of Appendix C of the AISC Specifications is a possible result. Therefore, the student must either know how to apply these provisions or have been told by the instructor to stop at this point or use a new member when this situation exists. In a fundamental course such as this, the latter choice will probably be used.

DECISION CHART 3 This decision chart outlined the procedure for calculating the allowable stress in bending for W sections bent about their major axis. The axial load is assumed to be zero. The requirements for compactness and the bracing requirements are checked. Based on the results the appropriate equation to be used to calculate the allowable stress is chosen. Knowledge of the definition of bracing length and the calculations of C_b is required for effective use of this decision chart. The student must know what to do if the member is not fully effective in resisting the load as determined by Section 1.9.

DECISION CHART 4 This decision chart outlines the procedure for calculating the allowable stress in bending for W sections bent about
their minor axis. The student must know what to do if the member is not fully effective in resisting the load as determined by Section 1.9.

DECISION CHART 5 This decision chart outlines the application of the combined stress provisions of the AISC Specification as applied to W sections. It is the only decision chart which is presented on more than one page. It required six pages and should be handed out as a unit. The student must have acquired enough knowledge to calculate the allowable compression stress and allowable bending stress about the major and minor axis using the respective decision chart. He must know what to do if the member is not fully effective in resisting the load and how to calculate C_m and $F'e$.
NOMENCLATURE

\(A_f \) Area of compression flange

\(C_b \) Bending coefficient dependent upon moment gradient

\(C_c \) Column slenderness ratio dividing elastic and inelastic buckling

\(C_m \) Coefficient applied to bending term in interaction formula and dependent upon column curvature caused by applied moments

\(E \) Modulus of elasticity of steel (29,000 kips per square inch)

\(F_a \) Axial stress permitted in the absence of bending moment

\(F_b \) Bending stress permitted in the absence of axial force

\(F'e \) Euler stress divided by factor of safety

\(F_t \) Allowable tensile stress

\(F_y \) Specified minimum yield stress of the type of steel being used (kips per square inch). As used in this Specification, "yield stress" denotes either the specified minimum yield point (for those steels that have a yield point) or specified minimum yield strength (for those steels that do not have a yield point).

\(K \) Effective length factor

\(P \) Applied load (kips)

\(b_f \) Flange width of rolled beam or plate girder

\(f_a \) Computed axial stress

\(f_b \) Computed bending stress

\(g \) Transverse spacing between fastener gage lines
\(\ell, \ell \) Actual unbraced length

\(r \) Radius of gyration

\(s \) Spacing (pitch) between successive holes in line of stress

\(t_w \) Girder, beam, or column web thickness

\(t_f \) Flange thickness
DECISION CHART 1

DECISION CHART FOR CALCULATING THE ALLOWABLE TENSION FORCE IN A PRIMARY MEMBER

START

IS MAX. \(\frac{I}{f} < 240 \)

PAR. 1.8.4

SLENDERNESS RATIO TOO LARGE - MEMBER CANNOT BE USED

YES

SLIENTNESS RATIO TOO LARGE - MEMBER CANNOT BE USED

NO

DOES MEMBER HAVE RIVET OR BOLT HOLES

YES

CALCULATE DIAMETER OF HOLES. PAR. 1.14.5

NO

CALCULATE NET AREA (\(A_N \))

\(A_N = \text{GROSS AREA} - \text{HOLE AREA} \)

PAR. 1.14.3 & 4

IF CHAIN OF HOLES EXIST

CHECK \(\frac{s^2}{4g} \)

NO

NET AREA = GROSS AREA

YES

NET AREA = 85% OF GROSS AREA

NO

\(F_t = 0.60 F_y \)

PAR. 1.5.1.1

\(P = F_t \times \text{NET AREA} \)
DECISION CHART 2

DECISION CHART FOR CALCULATING THE ALLOWABLE COMPRESSION STRESS - PRIMARY MEMBERS

START

DOES \(\frac{KL}{r} \) OF THE MEMBER EXCEED 200 PAR. 1.8.4

YES

CHOOSE A NEW MEMBER

NO

IS PAR. 1.9 OK

NO

REDUCE CROSS-SECTION OF THE MEMBER AS PER APPENDIX C

CALCULATE \(C_c \)

\[
C_c = \sqrt{\frac{2T^2E}{F_y}}
\]

IS MAX. \(\frac{KL}{r} > C_c \)

YES

ALLOWABLE STRESS SET BY EQ. 1.5-2. ELASTIC BUCKLING CONTROLS

NO

ALLOWABLE STRESS SET BY EQ. 1.5-1. YIELDING CONTROLS OR INELASTIC BUCKLING CONTROLS
DECISION CHART 3

DECISION CHART FOR CALCULATING THE ALLOWABLE STRESS IN BENDING FOR W SECTIONS BENT ABOUT THE MAJOR AXIS - NO AXIAL LOAD

START

\[\frac{b_f}{2t_f} \leq \frac{52.2}{F_y} \]

\[\frac{d}{t_w} \leq \frac{412}{F_y} \]

MEMBER IS COMPACT

\[\frac{1}{r_t} \geq \frac{76b_f}{F_y} \text{ AND } \leq \frac{20000}{(d/A_t)F_y} \]

\[F_b = 0.66F_y \]

\[\frac{1}{r_t} \leq \frac{\sqrt{510000C_b}}{F_y} \]

\[F_b = 0.60F_y \]

PARTIALLY COMPACT

\[\frac{1}{r_t} \geq \frac{76b_f}{F_y} \text{ AND } \leq \frac{20000}{(d/A_t)F_y} \]

\[\text{EQ. 1.5-5a DETERMINES } F_b \]

\[\frac{1}{r_t} \leq \frac{\sqrt{102000C_b}}{F_y} \]

\[\text{ALLOWABLE COMPRESSION STRESS IS THE LARGER OF EQ. 1.5-6a & 1.5-7 NOT TO EXCEED 0.60 } F_y \]

\[\text{ALLOWABLE COMPRESSION STRESS IS THE LARGER OF EQ. 1.5-6a & 1.5-7 NOT TO EXCEED 0.60 } F_y \]
DECISION CHART 4

DECISION CHART FOR CALCULATING THE ALLOWABLE STRESS IN BENDING FOR W SECTIONS BENT ABOUT THE MINOR AXIS.

START

PAR. 1.5.1.4.3

IS

\[\frac{b_f}{2t_f} \leq \frac{52.2}{F_y} \]

COMPACT IN FLANGE

YES

\[F_b = 0.75 F_y \]

NO

IS

\[\frac{b_f}{2t_f} \leq \frac{95}{F_y} \]

YES

EQ. 1.5-5b DETERMINES \(F_b \)

NO

REDUCE SECTION AS PER APPENDIX C
DECISION CHART 5

DECISION CHART FOR THE APPLICATION OF THE COMBINED STRESS PROVISIONS OF A.I.S.C. TO W SECTIONS

START

EQ. 1.6-2

CALCULATE F_a AS PER DECISION CHART C AND f_a AS $\frac{P}{A}$

IS $f_a = 0$

YES

NO

IS $f_b = 0$

YES

NO

DECISION CHART 1.6-1a

CALCULATE F_{bx} AS PER DECISION CHART B-S AND f_{bx} FROM MOMENT - STRONG AXIS

IS $f_{bx} = 0$

YES

NO

CALCULATE F_{by} AS PER DECISION CHART B-W AND f_{by} FROM MOMENT - WEAK AXIS.

IS $f_{by} = 0$

YES

NO

USE EQ. 1.6-2 TO CHECK IF THE MEMBER IS ADEQUATE.

NOTE

IF ALL STRESSES ARE ZERO MEMBER IS CHosen BY OTHER CONSIDERATIONS.
DECISION CHART 1.6-1a

EQ. 1.6-1a

CALCULATE: f_{bx} AS PER DECISION CHART B-S USING $C_b = 1$,
F_{ex}' REF. P. 5-94, AND C_{mx} REF. P. 5-131 & 133.

CALCULATE f_{bx} FROM MOMENT WITHIN THE SPAN-STRONG AXIS.

ARE THERE TRANSVERSE LOADS

YES

CALCULATE f_{bx} FROM END MOMENT-STRONG AXIS.

NO

YES

IS $f_{bx} = 0$ NO

CALCULATE F_{by} AS PER DECISION CHART B-W,
F_{ey}' REF. P. 5-94, AND C_{my} REF. P. 5-131 & 133.

CALCULATE f_{by} FROM MOMENT WITHIN THE SPAN-WEAK AXIS.

ARE THERE TRANSVERSE LOADS

YES

CALCULATE f_{by} FROM END MOMENT-WEAK AXIS.

NO

USING Eq. 1.6-1a TO CHECK IF THE MEMBER IS ADEQUATE.

IS MEMBER OK

NO

CHOOSE A NEW MEMBER

YES

DECISION CHART 1.6-1b
DECISION CHART 1.6-1b

EQ. 1.6-1b

YES

IS \(f_{bx} = 0 \)

NO

CALCULATE \(f_{bx} \) AS PER DECISION CHART

B-S USING THE ACTUAL VALUE OF \(C_b \)

CALCULATE \(f_{bx} \) FROM END MOMENT-STRONG AXIS

YES

ARE THERE TRANSVERSE LOADS

NO

\(f_{bx} \) IS THE SAME AS FOR EQ. 1.6-1a

YES

\(f_{by} = 0 \)

NO

\(f_{by} \) IS THE SAME AS FOR EQ. 1.6-1a

CALCULATE \(f_{by} \) FROM END MOMENT-WEAK AXIS

YES

ARE THERE TRANSVERSE LOADS

NO

\(f_{by} \) IS THE SAME AS FOR EQ. 1.6-1a

\(f_a \) IS THE SAME AS FOR EQ. 1.6-1a

USE EQ. 1.6-1b TO CHECK IF THE MEMBER IS ADEQUATE.

CHOOSE A NEW MEMBER

NO

YES

MEMBER OK

MEMBER IS OK

IS MEMBER OK
DECISION CHART C
DECISION CHART FOR CALCULATING THE ALLOWABLE COMPRESSION STRESS - PRIMARY MEMBERS

START

DOES MAX. $\frac{K_1}{r}$ OF THE MEMBER EXCEED 200 PAR. 1.8.4

YES

CHOOSE A NEW MEMBER

NO

IS PAR. 1.9 OK

NO

REDUCE CROSS-SECTION OF THE MEMBER AS PER APPENDIX C.

CALCULATE C_c

$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$

IS MAX. $\frac{K_1}{r} > C_c$

YES

ALLOWABLE STRESS SET BY EQ. 1.5-2. ELASTIC BUCKLING CONTROLS

NO

ALLOWABLE STRESS SET BY EQ. 1.5-1. YIELDING CONTROLS

TABLES ON PAGES 5-64 THRU 92
DEcision chart B-S

Decision chart for calculating the allowable stress in bending for W sections bent about the major axis.

START: Par. 1.5.1.4.1

- **IS** $\frac{b_f}{2f} \leq \frac{52.2}{F_y}$ **NO**
- **IS** $\frac{b_f}{2f} \geq \frac{95}{F_y}$ **NO**
- **REDUCE SECTION AS PER APPENDIX C.**

1. **IS**
 - $\frac{d}{t_w} \leq \frac{412}{F_y} \left(1 - 2.33 \frac{f_a}{F_y}\right)$ **WHEN** $\frac{f_a}{F_y} \leq 0.16$
 - $\frac{d}{t_w} \leq \frac{257}{F_y}$ **WHEN** $\frac{f_a}{F_y} > 0.16$

2. **MEMBER IS COMPACT**
 - **NO**
 - **IS** $l \leq \frac{76b_f}{F_y}$ AND $\leq \frac{20000}{(d/A_f) F_y}$
 - **ALLOWABLE TENSION STRESS** = $0.60 F_y$
 - $F_b = 0.66 F_y$

3. **PARTIALLY COMPACT**
 - **NO**
 - **IS** $l \leq \frac{76b_f}{F_y}$ AND $\leq \frac{20000}{(d/A_f) F_y}$
 - **NO**
 - **YES**
 - **EQ. 1.5-5a DETERMINES** F_b

4. **ALLOWABLE COMPRESSION STRESS IS THE LARGER OF**
 - Eq. 1.5-6a & 1.5-7
 - **NOT TO EXCEED** $0.60 F_y$

5. **PAR. 1.5.1.4.6a**

6. **PAR. 1.5.1.4.6b**
 - **YES**
 - **ALLOWABLE COMPRESSION STRESS IS THE LARGER OF**
 - Eq. 1.5-6a & 1.5-7
 - **NOT TO EXCEED** $0.60 F_y$
 - **NO**
DECISION CHART B-W

DECISION CHART FOR CALCULATING THE ALLOWABLE STRESS IN BENDING FOR W SECTIONS BENT ABOUT THE MINOR AXIS.

START

PAR. 1.5.1.4.3

IS

\[\frac{b_f}{2t_f} \leq \frac{52.2}{\sqrt{F_y}} \]

COMPACT IN FLANGE

YES

\[F_b = 0.75 F_y \]

NO

IS

\[\frac{b_f}{2t_f} \leq \frac{95}{\sqrt{F_y}} \]

YES

EQ. 1.5-5b DETERMINES \(F_b \)

NO

REDUCE SECTION AS PER APPENDIX C
APPENDIX IV.—PROGRAM DOCUMENTATION AND LISTINGS

In this appendix is presented the documentation of a series of computer programs developed to aid in teaching the fundamentals of steel design. The AISC Specification's design criteria was used. All the programs are written in CPS-PL/I for an IBM 2741 terminal. They interact with the user during the design process through the use of conversational programming. All the programs are written such that once executed, their use is explained via the output on the terminal.

Two types of programs were developed. Those whose name end in TST are learning programs with extensive output and repetitious input. DSN as the last three letters of a name indicate efficient design and investigation programs. In this type of program only the minimum input is requested and the output is reduced to only that required to indicate which design route was taken. A structural analysis program RIGID was also developed. This program will assist the student when performing the structural analysis required by the special design projects.

The documentation of the programs is presented in the following four parts:

PROGRAM DESCRIPTION — The program description consists of the program's name, its purpose and limitations and any prerequisites and data required before execution.

OVERALL FLOW CHART — This flow chart presents an overview of what the program will do during execution. It is presented in flow chart form but uses only the AISC Specification terminology. This part of the documentation along with the program description is intended for use
by the instructor of the course. He should use them to determine which type of homework problem is to be assigned in order to accomplish a specific objective.

DETAILED FLOW CHART - This flow chart presents the logic blocks of the programs. It uses both computer programming and the AISC Specification terminology.

LISTING - The statement by statement listing of the program is presented. The detailed flow chart gives the objective of a block of program statements and the listing gives the details. These two parts of the documentation are presented for use by persons modifying or extending the programs.
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENTST</td>
<td>75</td>
</tr>
<tr>
<td>TENDSN</td>
<td>82</td>
</tr>
<tr>
<td>COLTST</td>
<td>92</td>
</tr>
<tr>
<td>BENTST</td>
<td>113</td>
</tr>
<tr>
<td>BENDSN</td>
<td>142</td>
</tr>
<tr>
<td>BIXDSN</td>
<td>168</td>
</tr>
<tr>
<td>PLADSN</td>
<td>205</td>
</tr>
<tr>
<td>RIGID</td>
<td>223</td>
</tr>
</tbody>
</table>
Program Name:

TENTST

Purpose:

Program TENTST is a question and answer review of tension member design using the AISC Specification. It is a very simple program to use and should be the first presented to the class. In this way it will serve as an introduction to the use of the terminal.

Limitations:

This program is a review program only and will not perform design or investigation, other than two preprogrammed examples.

Prerequisites:

Read AISC Sections:

1.5.1.1 TENSION
1.8.4 MAXIMUM RATIO
1.14.3 NET SECTION
1.14.5 SIZE OF HOLE

The student must know the purpose of stitching rivets and welds.

Data Required Before Execution:

None.
Present a review of tension member design and the role played by the AISC specification.

Question and answer review of:
par. 1.5.1.1 TENSION
1.8.4 MAXIMUM RATIO
1.14.3 NET SECTION
1.14.5 SIZE OF HOLES

Present two preprogrammed design problems:
1. Single Angle-Welded Connections
2. Double Angle-Bolted Connections
Present a review of tension member design and the role played by the AISC specification.

Question the student about the provision of par. 1.5.1.1 TENSION
1.8.4 MAXIMUM RATIO
1.14.3 NET SECTION
1.14.5 SIZE OF HOLE

Is response correct?

Print Error

yes

Print the correct answer and the reason.

Present two preprogrammed problems:
1. Single Angle-Welded Connections
2. Double Angle-Bolted Connections
/* PROGRAM TENTST */
PUT LIST('program TENTST');
PUT LIST('');
PUT LIST('PURPOSE: program TENTST will review with you the principles of tension member design.');
PUT LIST('');
PUT LIST('Before continuing you should have read the following sections in the AISC code:');
PUT LIST(' 1.5.1.1 TENSION');
PUT LIST(' 1.8.4 MAXIMUM RATIO');
PUT LIST(' 1.14.3 NET SECTION');
PUT LIST(' 1.14.5 SIZE OF HOLES.');
PUT LIST('');
PUT LIST('In general the design of a tension member is based on the stress being equal to the force divided by the area');
PUT LIST(' or f = P/A. In design you provide the required area such that the stress is below some allowable value.');
PUT LIST(' The AISC Specifications provides the allowable stress and some practical guidelines on allowable length');
PUT LIST(' and reduction of area due to connections.');
PUT LIST('');
PUT LIST('Lets review some of these requirements.');
PUT LIST('');
PUT LIST('');
PUT LIST('Because buckling is no problem the length of a tension member is NOT limited by the AISC code');
PUT LIST(' true=1 false=0');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO lab2;
PUT LIST(' ERROR');
lab2: PUT LIST('The code recommends limiting the length of a tension member by restricting the L/r to be less than 240.');
PUT LIST('');
If 7/8 inch diameter bolts are to be used in a tension connection the reduced area of the member is calculated based on a ____ inch diameter hole?

The code requires an increase of 1/16 inch to the diameter of the bolt or rivet in calculating.

Given a 6 x 1/2 inch plate with two staggered 1 in. diameter holes, what is the net section in

resisting a tension force.

The effective area is the minimum of the following:

Area = 1/2*(6 - 1) = 2.5sq.in.
Area = 1/2*(6 - 2 + s*s/(4*g)) = 1/2*(6 - 2 + 4/(4*2)) = 2.25sq.in. this controls
Area = .85*6*.5 = 2.55sq.in.

What is the allowable tension stress if the Yield stress is 36 ksi?
IF ANSWER=22 THEN GO TO lab4; ELSE GO TO lab5;

lab4: PUT LIST('ERROR');
lab5: PUT LIST('The value of allowable stress for a Yield of 36 ksi is 22 ksi. It is calculated by .6*Yield');
PUT LIST(' or is found on Page 5-64 of the specifications.');
PUT LIST('');
PUT LIST('The following design problems are presented to provide the user with a procedure and acceptable format.');
PUT LIST(' for the calculations in tension member design.');
PUT LIST('');
PUT LIST('Design a single equal leg angle 10 ft. long to support a tension force of 54 kips.');
PUT LIST(' Use a Yield stress of 36 ksi and assume welded connections.');
PUT LIST(' Calculations: Allowable stress = .6*Yield = .6*36 = 22ksi');
PUT LIST(' Required area of steel = Force/Allowable stress = 54/22 = 2.45 in.sq.');
PUT LIST(' Minimum r = L/240 = 12*10/240 = 0.5 in.');
PUT LIST('');
PUT LIST('Use: Single angle 3 1/2 X 3 1/2 X 3/8 ref. page 1.57');
PUT LIST(' Area = 2.48 sq.in. > 2.45 sq.in.');
PUT LIST(' r z-z = .687 in. > .5 in. OK');
PUT LIST('');
PUT LIST('Check stress: stress = P/area = 54/2.48 = 21.8 ksi');
PUT LIST(' Percent understressed = (22 - 21.8)/22 = 0.9 %');
PUT LIST('');
PUT LIST('Design an equal leg double angle of length 12 ft. to support a tension load of 100 kips.');
PUT LIST(' Assume a 7/8 in. bolt will be used as a connector and the angles will be connected');
PUT LIST(' together or stitched on 3 ft. centers. Use A-36 steel.');
PUT LIST(' Calculations: Allowable stress = .6*Yield = .6*36 = 22ksi');
PUT LIST(' Required area of steel = Force/Allowable stress = 100/22 = 4.55sq.in.');
PUT LIST(' Minimum r = L/240');
single angle \frac{L}{240} = \frac{3\times12}{240} = .166 \text{ in.} \\
double angles \frac{L}{240} = \frac{12\times12}{240} = .6 \text{ in.}

Assume angles chosen will be approximately 1/2 in.

Reduction in area due to bolt holes = \frac{7}{8} + \frac{1}{16} \\
(Two holes were used because bolt will go thru the back to back legs of the angles.)

Total area required = 4.55 + .94 = 5.49\text{sq.in.}

Use: 4 \times 4 \times \frac{3}{8} Double angles ref. page 1.64

Area = 5.72 - (\frac{7}{8} + \frac{1}{16}) \times \frac{3}{8} \times 2 = 5.02\text{sq.in.} \\
or

Area = 85\% of total area = \frac{85}{100} \times 5.72 = 4.86\text{sq.in.} < 5.02\text{sq.in. this controls}

Minimum r single angle = .788 \text{in.} > .166\text{in.} \\
Minimum r double angle = 1.24\text{in.} > .6\text{in.}

Check stress: f = \frac{P}{A} = \frac{100}{5.02} = 19.9 \text{ksi}

It is suggested that you keep this output in your notebook as part of the class notes.

If you think you have the concepts of tension design and wish to interact with the computer:

on some more design problems LOAD and EXECUTE TENDSN.'
Program Name:
TENDSN

Purpose:
Program TENDSN will interact with the user in the design of tension members using the AISC Specification. It will design both single and built up members with bolted, riveted or welded connections. If a reduction in area is required because of rivet or bolt holes, a table of required gross area is printed. The smallest section is then chosen based on this table using the number of connection holes at a section and the thickness of the steel. If the member being designed is a built up section, a table of minimum r values for varying stitching lengths is printed. The use of these tables makes tension design a one pass calculation. The introduction to trial and error design is presented in program COLTST.

Limitations:
If staggered holes exist, interpretation in the table of required gross area or a manual check is required.

Prerequisites:
Execution of program TENTST.

Data Required Before Execution:
A tension design problem must be defined before execution of TENDSN.

P - Tension force.
F - Yield stress of the steel.
L - Length of the member.

Type of member to be used i.e. single or built up members with riveted, bolted or welded connections.
Overall Flow Chart TENDSN

START

Print an explanation of the data required during execution of TENDSN.

BEGIN

Input P, L, Fy and TYPE

TYPE
1 - single member welded connections.
2 - single member riveted or bolted connections.
3 - built-up member welded connections.
4 - built-up member riveted or bolted connections.

Calculate and print the allowable tension stress
\[F_t = 0.6 \times F_y \]
and the required net area \(P/F_t \).

Go to TYPE

TYPE = 1

Calculate and print the required area and minimum value of \(r \).

Go to BEGIN
TYPE = 2

Input the diameter of the rivet or bolt and calculate the diameter of the hole.

Calculate and print a table of required gross areas based on varying thicknesses of steel and number of holes at a section, also the minimum value of r.

Go to BEGIN

TYPE = 3

Calculate and print the minimum r for the total section and a table of minimum r values for varying stitching lengths.

Go to BEGIN

TYPE = 4

Input the diameter of the rivet or bolt and calculate the hole size.

Calculate and print a table of required gross areas based on varying thicknesses and number of holes at a section, also the minimum value of r.

Calculate and print the minimum r for the total section and a table of minimum r for various stitching lengths.

Go to BEGIN
Detailed Flow Chart TENDSN

START

Print an explanation of the data required during execution.

lab1

Input: TITLE, P, L, Fy and TYPE

Calculate and print the allowable stress (Ft = .6*Fy) and the required net area (P/Ft).

P = 0

yes -> STOP

no -> TYPE > 3

yes -> Go to lab4

no -> TYPE > 2

yes -> Go to lab3

no -> TYPE > 1

yes -> Go to lab2

no -> Go to lab1

Single member welded connections . . . Calculate and print the required area (a) and the minimum r (r).

Go to lab1
Single member riveted or bolted connections.

CALL pro1

Calculate and print minimum r.

Go to lab1

Built-up member welded connections

CALL pro2

Go to lab1

Built-up member riveted or bolted connections.

CALL pro1

Calculate and print minimum r for total section.

Go to lab1
Input the diameter of the rivet or bolt and calculate the diameter of the hole.

Calculate and print a table of required gross areas for t of 3/8, 7/16, 1/2, 9/16, 5/8, 3/4, 7/8 and 1 in. and the number of holes varying from 1 to 4. Flag with an asterisk all values for which the 85% rule of paragraph 1.14.3 controls.

RETURN

Internal Procedure pro2

Calculate and print a table of minimum r for lengths of L/2, L/3, L/4 and L/5 (L - total length of the member.).

RETURN
/*PROGRAM TENDSN*/
DECLARE fra(8) CHAR(4);
DECLARE ast(4) CHAR(1);
DECLARE area(4) ;
DECLARE TITLE CHAR(80);
 fra(1)='3/8 ';
 fra(2)='7/16';
 fra(3)='1/2 ';
 fra(4)='9/16';
 fra(5)='5/8 ';
 fra(6)='3/4 ';
 fra(7)='7/8 ';
 fra(8)='1 ';
LET round(x)=ceil(x*100)/100;
PUT LIST(' program TENDSN');
PUT LIST(' ');
PUT LIST('Purpose: program TENDSN will interact with the user in the design of tension members.');
PUT LIST(' ');
PUT LIST(' ');
PUT LIST('The following are parameters which will be required by TENDSN as the design proceeds.');
PUT LIST(' TITLE - the title of the design for use by the user in identification of the output.');
ast(1)='''';
PUT LIST(' (The title must be enclosed in single quotes ie',ast(1),'
-- title -- ',ast(1),');
PUT LIST(' P - tension force (kips).');
PUT LIST(' L - unbraced length of the member (ft.).');
PUT LIST(' Fy- yield stress of the member (ksi.).');
PUT LIST(' TYPE - type of design');
PUT LIST(' 1 single member welded connections.');
PUT LIST(' 2 single member riveted or bolted connections.');
PUT LIST(' 3 built up member welded connections.');
PUT LIST(' 4 built up member riveted or bolted connections.');
PUT LIST(' To end the program input the tension force (P) as zero (0).');
lab1: PUT LIST(' '); PUT LIST(' '); GET LIST(TITLE); GET LIST(P); IF P=0 THEN GO TO enn; GET LIST(L,Fy); Ft=Fy*.6; Ft=round(Ft); IF Fy=36 THEN Ft=22; PUT LIST('Allowable tensile stress = Ft = .6*Fy = ',Ft,' ksi'); PUT LIST(' (this must be < .5*minimum tension strength of material)'); a=P/Ft; a=round(a); PUT LIST('Required net area = P/Ft = ',a,' sq.in.'); PUT LIST(' '); r=L*12/240; r=round(r); GET LIST(TYPE); IF TYPE>3 THEN GO TO lab4; IF TYPE>2 THEN GO TO lab3; IF TYPE>1 THEN GO TO lab2; PUT LIST('Single member welded connections'); PUT LIST(' '); PUT LIST('Required area = ',a,' sq.in.'); PUT LIST('Minimum r = L/240 = ',r,' in.'); GO TO lab5; lab2: PUT LIST('Single member riveted or bolted connections'); PUT LIST(' '); CALL pro1; PUT LIST(' '); PUT LIST('Minimum r = L/240 = ',r,' in.'); GO TO lab5; lab3: PUT LIST('Built up member welded connections'); PUT LIST(' ');
PUT LIST('Minimum r for total section = L/240 = ',r,' in.'); CALL pro2;
GO TO lab5;
lab4: PUT LIST('Built up member riveted or bolted connections.'); PUT LIST(' '); CALL pro1;
PUT LIST(' '); PUT LIST('Minimum r for total section = L/240 ',r,' in.'); CALL pro2;
lab5: PUT LIST(' '); PUT LIST(TITLE);
PUT LIST(' '); GO TO lab1;
enn: PUT LIST('Execution of TENDSN complete.'); END ;
pro1: PROCEDURE ;
PUT LIST('What is the diameter of rivet or bolt to be used in the connections (d) in.');
GET LIST(d);
dh=d+1/16;
PUT LIST('The diameter of the hole = d+1/16= ',dh,' in.');
PUT LIST(' '); PUT LIST(' TABLE of required gross areas');
PUT LIST(' '); PUT LIST(' '); PUT IMAGE(1)(im3);
im3: IMAGE:
Thickness of steel
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
| | | @ holes';
PUT LIST('');
c = 5/16;

loop1: DO j = 1 to 8;
 c = c + 1/16;
 IF j > 5 THEN c = c + 1/16;

loop2: DO i = 1 to 4;
 area(i) = max(c * dh * i + a, a / .85);
 IF c * dh * i + a > a / .85 THEN ast(i) = ' '; ELSE ast(i) = '*';
END loop2;

PUT IMAGE(fra(j), area(1), ast(1), area(2), ast(2), area(3), ast(3), area(4), ast(4))(im1);

im1: IMAGE;

 | ---.-- | ---.-- | ---.-- | ---.-- |
END loop1;

PUT LIST(' ');
RETURN;
END pro1;

pro2: PROCEDURE;
 PUT LIST(' ');
 PUT LIST('TABLE of minimum r for individual members of the built up section.');
 PUT LIST(' ');
 PUT LIST('Length between stitching Minimum r ');
 PUT LIST(' Rivets or Welds ');
 PUT LIST(' ');

loop3: DO i = 2 TO 5;
 PUT IMAGE(i, L * 12/(240*i))(im2);
END loop3;

im2: IMAGE;
 L/----
 RETURN;
END pro2;
Program Name:

COLTST

Purpose:

Program COLTST will interact with the user in the design and investigation of compression members. Because the subject matter which it covers is relatively simple, COLTST was written primarily to serve as a vehicle for introducing trial and error design.

Limitations:

Only W, single and double angle sections may be designed using COLTST.

Prerequisite:

Read the following Sections of the AISC Specification:

1.5.1.3 COMPRESSION.
1.8 STABILITY AND SLENDERNESS RATIOS.
1.9 WIDTH-THICKNESS RATIOS.

The student must have knowledge of the effective length factor K and how to calculate it.

Data Required Before Execution:

The column configuration is necessary, i.e. KL for the x,y and z axis. If a design problem is being worked the axial load is required; investigation of a member requires the member properties.
Overall Flow Chart COLTST

START

Print an explanation of the fundamentals of column design and the applicable provision of the AISC specification.

Give the definition of an investigation problem and a design problem.

Define the parameters required during the execution of COLTST.

BEGIN

Is this an investigation problem

no

Go to DESIGN

yes

INVESTIGATION

Reiterate the definition of an investigation problem and the reasoning of the AISC specification.
Interact with the student in the investigation of the member.

Another investigation problem?

yes

no

A Design problem?

no

End program

yes

DESIGN

Reiterate the definition of a design problem. Outline a sound procedure for assuming a trial allowable stress.

Input a trial allowable stress.

Choose a trial member based on the trial stress.

Interact with the student to investigate the adequacy of the member chosen.

Do you know which member?

yes

no

New member?

yes

no

New design?

yes

no

Go to INVESTIGATION

Investigation problem?

yes

no

END
Print an explanation of the fundamentals of column design and the applicable provisions of the AISC Specification. Define investigation and design problem.

Define the parameters required during the execution of COLTST.
External Procedure COLTSL

Reiterate the definition of an investigation problem and the basic reasoning of the AISC Specification.

start

Check to see if the member can be considered fully effective as per Section 1.9.

cont yes Is par. 1.9 OK no pend

Input K,L, & r for the x and y axis. If single angle is being investigated input also for the z axis.

\[(K\times L/r)_{\text{max}} > 200?\] yes no

Calculate \(C_c\)

\[(K\times L/r)_{\text{max}} > C_c\] yes no 1b4

Eq. 1.5-2 sets the allowable stress (t1).

Eq. 1.5-1 sets the allowable stress (t1).

Print message about Appendix C.

Print message about Section 1.8.4.

Go to agn
Allowable load = \text{tl} \times \text{AREA}

Investigation ?

- Yes: Go to start
- No: RETURN
External Procedure COLTS2

Reiterate the definition of a design problem. Outline a procedure for assuming a trial allowable stress.

1. Start

2. Input P, F_y and $L & K$ for the x and y axis.

3. Input a trial allowable stress.

4. Choose a trial member.

5. Check to see if the member can be considered fully effective as per Section 1.9.

6. Is par. 1.9 OK?
 - Yes: Continue
 - No: Print message about Appendix C.
If single angle is being used input K, L and r for the z axis.

\[(K \times L / r)_{\text{max.}} > 200\]

no \hspace{2cm} yes

Calculate \(C_c \) \hspace{2cm} Print message about Section 1.8.4.

\[(K \times L / r)_{\text{max.}} > C_c\]

no \hspace{2cm} yes

Eq. 1.5-2 sets the allowable stress (\(t_l \)) \hspace{2cm} Eq. 1.5-1 sets the allowable stress (\(t_l \)).

Print \(F_{\text{fall.}}, F_{\text{act.}}, F_{\text{fall.}} / F_{\text{act.}} \)

\[\text{enn}\]

New member? \hspace{2cm} Do you know which member?

yes \hspace{2cm} yes

1b7 \hspace{2cm} RETURN

no \hspace{2cm} no

New design? \hspace{2cm} Go to again

no \hspace{2cm} Go to inv

yes \hspace{2cm} Go to start
/*PROGRAM COLTST*/
DECLARE COLTS1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE COLTS2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE COLTT1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE COLTT2 ENTRY EXT KEY(whmIII) LIB(USER2);
PUT LIST('Do you want the discussion of the program printed? (type 1 for yes and 0 for no)');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO not;
CALL COLTT1;
CALL COLTT2;
not:
PUT LIST(' ');
PUT LIST(' ');
PUT LIST('Which type of problem do you want to work? (Investigation = 1 Design = 2)');
GET LIST(ANSWER);
IF ANSWER=2 THEN GO TO dsn;
inv:
CALL COLTS1;
PUT LIST('Would you like to work a design problem?');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO lab2;
dsn:
CALL COLTS2;
PUT LIST('Would you like to try an investigation problem?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO inv;
lab2:
END;
PROCEDURE;
PUT LIST(' ');
PUT LIST('Program COLTST will review with you the fundamentals of column
design.');
PUT LIST(' ');
PUT LIST('Before proceeding you should have read the following sections:');
PUT LIST(' 1.5.1.3 Compression.');
PUT LIST(' 1.8 Stability and Slenderness Ratio.');
PUT LIST(' 1.9 Width-Thickness Ratios.');
PUT LIST(' ');
PUT LIST('In general the design of a column is based on the mechanics of
materials equation');
PUT LIST(' ');
PUT LIST(' f = P/A');
PUT LIST(' where:');
PUT LIST(' P - axial load');
PUT LIST(' A - cross section area of the member');
PUT LIST(' f - the stress due to the load P');
PUT LIST(' ');
PUT LIST('The AISC sets forth the allowable stress due to compression.
Basically, it sets the');
PUT LIST(' allowable stress at 3/5*Fy by Eq. 1.5-1. This allowable is
further reduced by the');
PUT LIST(' other terms in Eq. 1.5-1 to account for residual stresses and
end restraints.'');
PUT LIST(' Eq. 1.5-2 sets an allowable stress for the condition of elastic
buckling, it is ');
PUT LIST(' simply Euler's equation times a factor of safety. The effective
length and the');
PUT LIST(' radius of gyration of the member determines which equation is
applicable.');
PUT LIST(' In design two types of problems are encountered. One gives the
section and asks for');
PUT LIST(' the allowable load. The other gives the load and asks for a
member which will ');
PUT LIST(' support it economically. The first is referred to as an investigation problem;');
PUT LIST(' the latter is a design problem.');
RETURN ;
COLT2: PROCEDURE ;
PUT LIST('');
PUT LIST('The following are parameters which are required in the execution of
COLTST:');
PUT LIST(' Fy - yield stress of the steel (ksi).');
PUT LIST(' Fa - allowable stress of the member (ksi).');
PUT LIST(' E - modulus of elasticity (29000 ksi).');
PUT LIST(' Ly - distance between bracing against bending about the Y axis
(ft).');
PUT LIST(' Lx - distance between bracing against bending about the X axis
(ft).');
PUT LIST(' Lz - distance between bracing against bending about the Z axis
(ft).');
PUT LIST(' Ky - effective length factor for bending about the Y axis.');
PUT LIST(' Kx - effective length factor for bending about the X axis.');
PUT LIST(' Kz - effective length factor for bending about the Z axis.');
PUT LIST(' (recommended values of K are found on Page 5-138 of the
AISC Specifications.)');
PUT LIST(' rx - radius of gyration about the X axis (in.).');
PUT LIST(' ry - radius of gyration about the Y axis (in.).');
PUT LIST(' rz - radius of gyration about the Z axis (in.).');
PUT LIST(' (Data for the Z axis will be required only for single angle
members.)');
PUT LIST(' P - axial load (kips)').
PUT LIST(' ANSWER - usually requiring a yes or no indication (1 = yes 0 =
no).');
PUT LIST(' AREA - cross section area (in**2).');
RETURN ;
END COLT2;
COLTS1: PROCEDURE;
DECLARE ttt CHAR(1);
DECLARE t1 DEC(4), Cc DEC(4), t2 DEC(4), t3 DEC(4);
PUT LIST('');
ON ATTENTION GO TO start;
PUT LIST('In an investigation problem the engineer is required to calculate the axial load a certain member will resist, i.e. the column capacity.');
PUT LIST('');
PUT LIST('As previously stated the AISC Specifications sets the allowable stress at');
PUT LIST('3/5*Fy plus a reduction due to column configuration, residual stresses and');
PUT LIST('elastic buckling. Therefore since the member is known the allowable stresses can be calculated. Using this allowable stress the allowable load is found');
PUT LIST('by P = Fa*A.');
PUT LIST('');

start:
PUT LIST('Choose any W, single or double angle member and column configuration and lets go thru an investigation');
PUT LIST(' of it for the allowable axial load.');
PUT LIST('');
PUT LIST('For your reference type any information which will help in identification of the problem');
GET EDIT(ttt)(A(1));
PUT LIST('');
PUT LIST('INPUT:');
FET LIST(Fy,AREA);
sfy=sqrt(Fy);
PUT LIST('We must first check to see if the section may be considered fully effective in resisting');
PUT LIST(' the axial compressive stress.');
According to Section 1.9.1.2 the unstiffened elements may be considered as fully effective if:
width to thickness ratio is less that
\[t_1 = \frac{76}{F_y^{0.5}} \]
for single angle struts; double angle struts with separators.
\[t_1 = \frac{95}{F_y^{0.5}} \]
for double angle struts in contact; flanges of beams.

Is this criteria satisfied?

If \(\text{ANSWER}=0 \) then go to pend;
\[t_1 = \frac{253}{F_y^{0.5}} \]
According to Section 1.9.2.2 stiffened elements may be considered fully effective if:
\[t_1 = \frac{253}{F_y^{0.5}} \]
for webs of compression elements.

Is this criteria satisfied" (indicate yes if angles are being used.)

If \(\text{ANSWER}=0 \) then go to pend;

The member cannot be considered as fully effective in resisting the load.
The reduced area may be calculated as per Appendix C of the AISC Specifications.
Since the provisions of this Appendix have not been included in COLST you have the option now of terminating the program and calculating the reduced area by hand or you may try a new member.
Do you want to terminate the program?

If \(\text{ANSWER}=1 \) then put list('What guts!'); else go to lb1;

What guts!

I thought you would!;

Go to agn;
cont: PUT LIST('We must now check to see which of equations 1.5-1 and 1.5-2 sets the allowable stress.');
PUT LIST('Is this a single angle member?');
GET LIST(ANSWER);
angle=ANSWER;
PUT LIST('INPUT:');
GET LIST(rx,ry,Lx,Ly,Kx,Ky);
IF angle=1 THEN GET LIST(rz,Lz,Kz);
Cc=sqrt(2*9.86959*29000/Fy);
PUT LIST('Cc = (2*(pi)**2*E/Fy)**.5 = ',Cc);
t1=Kx*Lx**12/rx;
t2=Ky*Ly**12/ry;
IF angle=1 THEN t3=Kz*Lz*12/rz; ELSE t3=0;
IF angle=1 THEN GO TO an1;
PUT LIST('K*L/r X = ',t1,' Y = ',t2);
GO TO an2;
an1: PUT LIST('K*L/r X = ',t1,' Y = ',t2,' Z = ',t3);
an2: t1=max(t1,t2,t3);
IF t1>200 THEN GO TO lb6;
PUT LIST('K*.r = ',t1,' controls the allowable stress.');
IF t1>Cc THEN GO TO lb4;
PUT LIST('Allowable stress set by Eq 1.5-1.');
t2=t1**2;
t3=t2*t1;
c2=Cc**2;
c3=Cc**3;
t1=(1-t2/(2*c2))*Fy/(5/3+3*t1/(8*Cc)-t3/(8*c3);
GO TO lb5;
lb4: PUT LIST('Allowable stress set by Eq 1.5-2.');
t1=12*9.86959*29000/(23*t1**2);
lb5: PUT LIST('Fa = ',t1);
t1=AREA*t1;
PUT LIST('The allowable axial load is ',t1,' kips.');
agn: PUT LIST(' '); PUT LIST('Would you like to try another investigation problem?'); GET LIST(ANSWER); IF ANSWER=1 THEN GO TO start; RETURN;

1b6: PUT LIST('K*L/r > 200 therefore according to Section 1.8.4 this member cannot be used.'); GO TO agn;
END;
PROCEDURE;
DECLARE ttt CHAR(1);
DECLARE t1 DEC(4), Cc DEC(4), t2 DEC(4), t3 DEC(4);
PUT LIST(' ');
ON ATTENTION GO TO start;
PUT LIST('Design is basically a trial and error procedure. The designer
chooses a');
PUT LIST(' member based on his experience and checks to see if the member is
adequate.');
PUT LIST(' If the member is not satisfactory, he then chooses a new member
based on');
PUT LIST(' the experience just gained from the previous member.');
PUT LIST(' ');
PUT LIST('Since the largest allowable stress the AISC Specifications will
allow is 3/5*Fy, a');
PUT LIST(' good first choice is a member chosen based on an allowable stress
of something');
PUT LIST(' smaller than this value. How much smaller depends on the value
of K*L/r of the');
PUT LIST(' member. The smaller this ratio the closer the chosen value should be.');
start: PUT LIST('Type any information which will help you identify this output.');
PUT LIST(' ');
GET EDIT(ttt)(A(1));
PUT LIST('INPUT:');
GET LIST(P,Fy);
GET LIST(Lx, Ly,Kx,Ky);
sfy= sqrt(Fy);
t1=3/5*Fy;
PUT LIST('3/5*Fy = ',t1);
again: PUT LIST('Assume a trial allowable stress. ');
GET LIST(Fa);
t1=P/Fa;
PUT LIST('Based on this trial stress the required area is ',t1,' in**2.');
inv:

```
PUT LIST(' ');
PUT LIST('Choose a W, single or double angle member with this area keeping in
mind that a large value of r helps
keep the allowable stress high.');
PUT LIST('Type the name of the member chosen. ');
PUT LIST(' ');
GET EDIT(ttt)(A(l));
GET LIST(AREA);
PUT LIST('We must first check to see if the member may be considered fully
effective.');
PUT LIST('According to Section 1.9.1.2 the unstiffened elements may be considered
as fully effective if');
PUT LIST('width to thickness ratio is less than');
t1=76/sfy;
PUT LIST(' 76/Fy**.5 = ',t1,' for single angle struts; double angle struts
with separators. ');
t1=95/sfy;
PUT LIST(' 95/Fy**.5 = ',t1,' for double angle struts in contact; flanges
of beams. ');
t1=253/sfy;
PUT LIST('According to Section 1.9.2.2 the stiffened elements may be considered
fully effective if');
PUT LIST('the width to thickness is less than');
PUT LIST(' 253/Fy**.5 = ',t1);
PUT LIST('Where applicable, is this criteria satisfied? ');
GET LIST(ANSWER);
IF ANSWER=O THEN GO TO pend;
GO TO cont;
```

pend:

```
PUT LIST('The member cannot be considered as fully effective in resisting the
load. ');
PUT LIST('The reduced area may be calculated as per Appendix C of the AISC
Specifications. ');
PUT LIST('Since the provisions of this Appendix have not been included in
COLTST you');
```
PUT LIST(' have the option now of terminating the program and calculating
 the reduced');
PUT LIST(' area by hand or you may try a new member.');
PUT LIST('Do you want to terminate the program?');
GET LIST(ANSWER);
IF ANSWER=1 THEN PUT LIST('What guts!'); ELSE GO TO lb1;
STOP;

lb1: PUT LIST('I thought you would!');
GO TO enn;

cont: PUT LIST('We must now check to see which of equations 1.5-1 and 1.5-2 sets the
 allowable stress.');
PUT LIST('Is this a single angle member?');
GET LIST(ANSWER);
angle=ANSWER;
PUT LIST('INPUT:');
GET LIST(rx,ry);
IF angle=1 THEN GET LIST(rz,Lz,Kz);
Cc=sqrt(2*9.86959*29000/Fy);
PUT LIST('Cc = (2*(pi)**2*E/Fy)**.5 = ',Cc);
t1=Kx*Lx*12/rx;
t2=Ky*Ly*12/ry;
IF angle=1 THEN t3=Kz*Lz*12/rz; ELSE t3=0;
IF angle=1 THEN GO TO an1;
PUT LIST('K*L/r X = ',t1,' Y = ',t2);
GO TO an2;
an1: PUT LIST('K*L/r X = ',t1,' Y = ',t2,' Z = ',t3);
an2: t1=max(t1,t2,t3);
IF t1>200 THEN GO TO lb6;
PUT LIST('K*L/r = ',t1,' controls the allowable stress.');
IF t1>Cc THEN GO TO lb4;
PUT LIST('Allowable stress set by Eq 1.5-1.');
t2=t1**2;
t3=t2*t1;
c2=Cc**2;
c3=Cc**3;
\[t_1 = \frac{1-t_2/(2c2)}{2 * (5/3+3*t_1/(8Cc)-t_3/(8c3))} \]

Go to lb5;

lb4: PUT LIST('Allowable stress set by Eq 1.5-2.');

\[t_1 = 12 * 9.86959 * 29000 / (23 * t_1^2) \]

lb5: PUT LIST('Fa = ', t1);

\[t_2 = P / \text{AREA} \]

PUT LIST('Actual stress = ', t2, ksi.);

\[t_1 = t_1 / t_2 \]

PUT LIST('F-all/F-act = ', t1);

enn: PUT LIST('Would you like to try a new member?');

GET LIST(ANSWER);

IF ANSWER = 1 THEN GO TO lb7;

PUT LIST('Would you like to try a new design problem?');

GET LIST(ANSWER);

IF ANSWER = 1 THEN GO TO start;

RETURN;

lb6: PUT LIST('K*L/r > 200 therefore according to Section 1.8.4 this member cannot be used.');

GO TO start;

lb7: PUT LIST('Do you know which member?');

GET LIST(ANSWER);

IF ANSWER = 0 THEN GO TO again; ELSE GO TO inv;

END;
Program Name:

BENTST

Purpose:

The purpose of BENTST is to teach the procedure of investigation and design of a bending member. It is purposely detailed in its output to convey to the user exactly what is happening as the problem unfolds. It is a learning tool and is meant to be used by the student when working problems specifically assigned to supplement the lecture.

Limitations:

Only W members bent about the strong axis may be investigated or designed using BENTST. A C_y of one is used. An axial compressive stress of zero is assumed.

Prerequisite:

Read AISC Sections:

1.5.1.4 BENDING
1.9 WIDTH-THICKNESS RATIOS

Data Required Before Execution:

A bending investigation and/or design problem must be defined before execution of BENTST. The distance between cross-sections braced against twist or lateral displacement of the compression flange (L) must be defined.

Note:

In the design portion of BENTST the use of the values of F', F'', L_c and L_u are introduced.
Print an explanation of the reasoning behind the provisions of Section 1.5.1.4.1, 1.5.1.4.2 and 1.5.1.4.6.

Give the definition of an investigation problem and a design problem.

Define the parameters required during the execution of BENTST.

Investigation (1)
Design (2)

1

Go to DESIGN

INVESTIGATION

Reiterate the definition of an investigation problem and the basic reasoning of the applicable provisions of the AISC Specification.

Interact with the student in the investigation of the member.

Another investigation problem?

yes

no
Reiterate the definition of a design problem. Define $F'y$, $F''y$, Lc and Lu, and explain their use in a design problem.

Guide the student through the decision process of assuming a trial allowable stress.

Choose a trial member based on the assumed trial stress.

Interact with the student in the investigation of the adequacy of the member chosen.

Do you know which member?

Yes

New member?

Yes

Investigation problem?

Yes

Go to INVESTIGATION

No

END
Detailed Flow Chart BENTST

START

Skip discussions?

CALL BENTT1
CALL BENTT2
first = 1

first = 0

1

Investigation (1)
Design (2)

2

CALL BENTS1
Design?

yes

no

CALL BENTS2

CALL BENTS3

first? 1

CALL BENTS2

END

no

Investigation?

yes

no
Print an explanation of the fundamentals of beam design and the specific reasoning behind the provisions of Section 1.5.1.4.1, 1.5.1.4.2 and 1.5.1.4.6.

Print the definition of an investigation problem and a design problem.

RETURN

Define the parameters required during the execution of BENTST.

RETURN
External Procedure BENTS1

Reiterate the definition of an investigation problem and the basic reasoning of the AISC Specification.

Print five problems which if worked using BENTST will present a complete review of paragraph 1.5.1.4.

Input F_y & S
skip = 0

Check to see if local buckling of the flange will occur.

- Is par. 1.5.1.4.1a & b OK?
 - yes
 - Go to lb1
 - no
 - pend
 - Print message about Appendix C.
 - Go to lb5

- Is par. 1.5.1.4.2 OK?
 - yes
 - skip = 1
 - Go to lb5
 - no
 - pend
 - New member?
 - yes
 - Go to lb1
 - no
 - RETURN

Check local buckling of the web.

- Is par. 1.5.1.4.1d OK?
 - yes
 - no
 - Go to lb3
Compact member. yes Partially compact member.

Check to see if lateral torsional buckling is a problem.

Input dAf and bf

Is par. 1.5.1.4.1e OK?

The allowable stress is .66*Fy.

Paragraph 1.5.1.4.2 determines the allowable stress.

Go to 1b2
Input L, rT and dAf (if not previously defined).

Calculate the allowable stress as per paragraph 1.5.1.4.6.

Calculate and print the allowable bending moment.

Another investigation problem? yes Go to 1b5

no RETURN
External Procedure BENTS2

Reiterate the definition of a design problem. Define $F'y$, $F''y$, Lc and Lu, explain their use in a design problem.

RETURN
External Procedure BENTS3

start

Input M and Fy

Suggest a trial allowable stress of \(0.66 \times F_y\) if the beam is fully braced (brace = 1) and \(0.6 \times F_y\) if not (brace = 0).

lb2

Choose a trial member.

Through the student's use of \(F'\) and \(F''\) determine if the member is:

- Non-compact in both web and flange ANSWER = 0
- Compact in both web and flange ANSWER = 1
- Compact in flange only ANSWER = 2
- Compact in web only ANSWER = 3

ANSWER = 2

Yes \rightarrow Go to lb5

No

ANSWER = 1

Yes \rightarrow pcom = 0

No \rightarrow Go to 11
Eq. 1.5-5a determines the allowable stress.

Member OK?

- Yes: Go to edd
- No: Go to 12

Input L, rT and dAf (if not previously defined).

Calculate the allowable stress as per paragraph 1.5.1.4.6.

Member OK?

- Yes: edd
- No: Go to 12

Print message.
/*PROGRAM BENTST*/
DECLARE BENTT1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENTT2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENTS1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENTS2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENTS3 ENTRY EXT KEY(whmIII) LIB(USER2);
first=1:
PUT LIST('Would you like to skip the explanation of the program?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb1;
CALL BENTT1;
CALL BENTT2;

lb1: IF ANSWER=1 THEN first=0;
PUT LIST('Which type of problem would you like to review? (Investigation = 1
design = 2)');
GET LIST(ANSWER);
IF ANSWER=2 THEN GO TO dsn;

inv: CALL BENTS1;
BUT LIST('Would you like to try a design problem?');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO ed;

dsn: IF first=1 THEN CALL BENTS2;
first=0;
CALL BENTS3;
PUT LIST('Would you like to try an investigation problem?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO inv;

ed: PUT LIST('');
PUT LIST('You have just completed the review of investigation and design for
bending.');
PUT LIST('');
PUT LIST('To perform design and analysis for bending with less output titles
and thus ');
PUT LIST('more efficiently execute BENDSN.');

BENTT1: PROCEDURE;
PUT LIST('');
PUT LIST('Program BENTST will review with you the fundamentals of beam design.');
PUT LIST('');
PUT LIST('Before proceeding you should have read the following sections:');
PUT LIST(' 1.5.1.4 Bending');
PUT LIST(' 1.9.1 Unstiffened Elements Under Compression');
PUT LIST(' 1.9.2 Stiffened Elements Under Compression');
PUT LIST('');
PUT LIST('In general the design of a bending member or a beam is based on the mechanics of materials');
PUT LIST(' equation for the stress due to bending, i.e.');
PUT LIST(' f = M*c/I');
PUT LIST(' where');
PUT LIST(' f - stress due to bending');
PUT LIST(' M - bending moment at a particular section');
PUT LIST(' c - distance to the extreme fiber as measured from the neutral axis');
PUT LIST(' I - moment of inertia');
PUT LIST('');
PUT LIST(' The AISC Specification in paragraph 1.5.1.4 sets forth the allowable stress');
PUT LIST(' due to bending. Basically it sets the allowable stress at .66 times the yield');
PUT LIST(' stress of the steel, Ref. Paragraph 1.5.1.4.1. If the section, because of its');
PUT LIST(' lack of sufficient lateral support, buckles before the yield stress is reached');
PUT LIST(' this allowable stress is reduced as per Paragraph 1.5.1.4.6a or b. Such a');
PUT LIST(' beam will fail because of lateral torsional buckling. If the section,');
PUT LIST(' because of its shape, buckles locally before the yield stress is reached the');
allowable stress is reduced as per Paragraph 1.5.1.4.2 or 1.5.1.4.6a or b.

Such a beam will fail because of local buckling, such a section is called non-compact.

In design two types of problems are encountered. One gives the section and asks for the resisting moment or allowable load. The other gives the moment or load and asks for a section which will support it economically. The first is referred to as an investigation problem, the latter is a design problem.
BENTT2: PROCEDURE;
PUT LIST('The following are parameters which are required in the execution
of BENTST:');
PUT LIST(' Fy - yield stress of the steel (ksi).');
PUT LIST(' fa - allowable stress of the steel (ksi).');
PUT LIST(' bf - width of the flange (in.).');
PUT LIST(' tf - thickness of the flange (in.).');
PUT LIST(' dAf - d/Af or the depth of the member divided by the area of the
flange (1/in.).');
PUT LIST(' rT - radius of gyration of a section comprising the compression
 flange plus');
PUT LIST(' 1/3 the compression web area taken about an axis in the
 plane of the web (in.).');
PUT LIST(' L - distance between bracing of the compression flange (ft.).');
PUT LIST(' S - section modulus of the member (in**3).');
PUT LIST(' M - Bending Moment (ft.kips).');
PUT LIST(' ANSWER - usually requiring a yes or no indication by 1 = yes or
 0 = no.');
RETURN;
END BENTT2;
BENTS1: PROCEDURE;
DECLARE ttt CHAR(1);
DECLARE test1 DEC(4);
DECLARE test DEC(4);
DECLARE t1 DEC(4);
PUT LIST('In an investigation problem the engineer is required to calculate what bending moment a');
PUT LIST(' certain section will resist i.e. the resisting moment.');
PUT LIST('As previously stated the allowable stress is equal to .66 times the yield stress of the');
PUT LIST(' steel unless a reduction is specified by the AISC Specifications either because of the');
PUT LIST(' geometry of the section or the lateral bracing. Therefore since the section is known');
PUT LIST(' the allowable stress as per the AISC Specification can be calculated.');
PUT LIST('Rearranging the terms in our stress equation we have M=I*f/c');
PUT LIST('An investigation of the following members will give the user a review of bending.');
PUT LIST(' W18x55 Fy = 36ksi L = 5ft.');
PUT LIST(' W18x55 Fy = 36ksi L = 10ft.');
PUT LIST(' W21x55 Fy = 45ksi L = 5ft.');
PUT LIST(' W21x55 Fy = 36ksi L = 10ft.');
PUT LIST(' W21x55 Fy = 60ksi L = 10ft.');

1b5: PUT LIST('Choose any W section and lets go thru an investigation of it for the resisting moment.');
PUT LIST(' For your reference type the name of the member.');
GET EDIT(ttt)(A(l));
PUT LIST('What is the section modulus of the member?');
GET LIST(S);
GET LIST(Fy);
tf=0;
skip=0;
dAf=0;
sfy=sqrt(Fy);

20
PUT LIST('We will first check to see if local buckling is a concern.');
PUT LIST('If Section 1.5.1.4.1a and b are satisfied local buckling of the flange
will not occur.');
t1=52.2/sfy;
PUT LIST(' f2.2/Fy**.5 = ',t1);
PUT LIST('Are these two Sections satisfied?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb1;
PUT LIST('Member is partially compact if by Section 1.5.1.4.2 52.2/Fy**.5
< bf/2tf < 95/Fy**.5 and');
PUT LIST(' all other provisions of Section 1.5.1.4.1 are satisfied.');
t1=95/sfy;
PUT LIST(' 95/Fy**.5 = ',t1);
PUT LIST('Is bf/2tf < 95/Fy**.5 ?');
/* skip=1 member is partially compact. */;
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO pend; ELSE skip=1;

lb1: PUT LIST('If Section 1.5.1.4.1d is satisfied local buckling of the web will not
occur.');
t1=412/sfy;
PUT LIST(' 412(1-2.33fa/Fy)/Fy**.5 = ',t1,' fa = 0 because no compression
load.');
t1=257/sfy;
PUT LIST(' 257/Fy**.5 = ',t1);
PUT LIST('Is Section 1.5.1.4.1d satisfied?');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO lb3;
IF skip=1 THEN GO TO s1;
PUT LIST('The member is COMPACT i.e. no local buckling will occur.');
GO TO s2;

s1: PUT LIST('The member is partially compact.');
s2: PUT LIST('');
PUT LIST('Section 1.5.1.4.1e sets the requirements for lateral bracing of the
compression flange.');
PUT LIST(' If this section is satisfied lateral torsional buckling will not occur.'); GET LIST(dAf,bf);
t1=76*bf/sfy;
PUT LIST(' 76bf/Fy**.5 = ',t1,' in.');
t1=20000/(dAf*Fy);
PUT LIST(' 20000/((d/Af)*Fy) = ',t1,' in.');
PUT LIST('Is the bracing adequate? i.e. is L(in) < both of the above.');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO 1b3;
t1=.66*Fy;
IF Fy=36 THEN t1=24;
IF skip=1 THEN GO TO 1b4;
PUT LIST('The allowable stress in tension and compression is equal to .66*Fy = ',t1);
GO TO 1b2;

1b4: PUT LIST('The allowable stress in tension and compression is determined by section 1.5.1.4.2');
IF tf=0 THEN GET LIST(tf);
t1=Fy*(.733-.0014*bf/(2*tf)*Fy**.5);
PUT LIST(' Fb=Fy(.733 - 0.0014(bf/2tf)Fy**.5) = ',t1);
GO TO 1b2;

1b3: IF Fy=36 THEN t1=22; ELSE t1=.6*Fy;
PUT LIST('The allowable tension stress is .6*Fy = ',t1,' as per section 1.5.1.4.5.');
GET LIST(L,rT);
IF dAf=0 THEN GET LIST(dAf);
t1=L*12/rT;
test=sqrt(102000/Fy);
IF t1<test THEN GO TO 1b7;
test1=sqrt(510000/Fy);
IF t1>=test1 THEN GO TO 1b8;
PUT LIST('L/rT is between (102000*Cb/Fy)**.5 = ',test,' and (510000*Cb/Fy)**.5 = ',test1);
Therefore the allowable compression stress on the extreme fiber is the larger of:

\[t_1 = \frac{2}{3} - F_y \left(\frac{L}{rT} \right)^{\frac{2}{5}} \times 1530000 \times F_y \]

\[F_b = \left(\frac{2}{3} - \frac{F_y}{L/rT} \right) \times 1530000 \times C_b \times F_y \]

IF \(F_y = 36 \) THEN \(t_1 = 22 \); ELSE \(t_1 = F_y \times 0.6 \);

\[F_b = 12000 \times C_b / L \times A_f \]

\[t_1 = \max (t_1, \text{test}) \]
\[t_1 = \min (t_1, \text{test}) \]

USE: \(F_b = t_1 \)

GO TO \(\text{lb2} \);

1b8: IF \(F_y = 36 \) THEN \(t_1 = 22 \); ELSE \(t_1 = F_y \times 0.6 \);

\[F_b = 170000 \times C_b / (L/rT)^2 \]

\[\text{test} = \max (\text{test}, \text{test1}) \]
\[t_1 = \min (t_1, \text{test}) \]

USE: \(F_b = t_1 \)

GO TO \(\text{lb2} \);

1b7: IF \(F_y = 36 \) THEN \(t_1 = 22 \); ELSE \(t_1 = F_y \times 0.6 \);

\[F_b = 12000 \times C_b / L \times A_f \]

\[\text{test} = \max (\text{test}, \text{test1}) \]
\[t_1 = \min (t_1, \text{test}) \]

USE: \(F_b = t_1 \)

GO TO \(\text{lb2} \);

1b2: test = \(t_1 \times S / 12 \);

The allowable bending moment is \(\text{test} \) ft. kips.

PUT LIST('Do you want to try another investigation problem');
GET LIST(ANSWER):
IF ANSWER=1 THEN GO TO lb5;
RETURN;
PUT LIST(' ');
PEND:
PUT LIST('Because of a violation of Section 1.9 the member you have chosen');
PUT LIST(' will not be 100% effective in resisting the load. The reduction in');
PUT LIST(' section may be calculated as per Appendix C. This procedure has not');
PUT LIST(' been included in BENTST. Therefore you have the option of calculating');
PUT LIST(' this reduction by hand or of trying a new member.');
PUT LIST('Would you like to try a new member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb5;
RETURN;
END BENTS1;
BENTS2: PROCEDURE ;
DECLARE hyp CHAR(l);
hyp='''';
PUT LIST('Design is basically a trial and error procedure. The designer
chooses a member based on');
PUT LIST(' his experience and checks to see if the section is adequate. If
the section is not');
PUT LIST(' satisfactory he then chooses a new section based on the experience
gained from the ');
PUT LIST(' previous member.');
PUT LIST(' ');
PUT LIST('The AISC Manual of Steel Construction helps expedite this process by
listing in the section');
PUT LIST(' "Properties for Designing", two parameters which can be used to
see if the member is compact.');
PUT LIST(' These are Fy',hyp,'and Fy".');
PUT LIST(' Fy',hyp,' - stress at which the member is no longer compact
because of the flanges.');
PUT LIST(' Fy" - stress at which the member is no longer compact because
of the web.');
PUT LIST(' A dash (-) indicates the member is compact to a yield stress of
100 ksi. Fy" has been');
PUT LIST(' calculated using an axial stress of zero i.e. pure bending.');
PUT LIST(' Two other parameters which are of interest in design are Lc and
Lu. These have to do ');
PUT LIST(' with lateral bracing.');
PUT LIST(' Lc - if the length of lateral bracing is less than Lc and the
section is compact');
PUT LIST(' the allowable stress will be .66*Fy.');
PUT LIST(' Lu - if the length of lateral bracing is less than Lu the
allowable stress may be');
PUT LIST(' taken as .6*Fy.');
PUT LIST(' NOTE: If the length between bracing is much greater than
Lu the allowable stress');
PUT LIST(' will be much less than .6*Fy.');
BENTS3:
PROCEDURE;
DECLARE ttt CHAR(1);
DECLARE t1 DEC(4);
DECLARE fat DEC(4);
DECLARE test DEC(4);
DECLARE test1 DEC(4);
DECLARE S DEC(4);

im1: IMAGE;
Choose a W member with a section modulus of ------.-- in**3 about the x axis (Ref. Page 2.7 thru 2.12).
im1a: IMAGE;
For your reference type the name of the member chosen.
im2: IMAGE;
Based on Fy' and Fy'' is the member chosen compact
im3: IMAGE;
What is the section modulus of the member chosen (in**3).
im4: IMAGE;
Actual stress = ------.-- ksi allowable stress = ------.-- ksi.
im5: IMAGE;
Required section modulus based on the assumed stress = S = M*12/fa = ------.-- in**3.

start: PUT LIST('What is the design moment (ft.kips).');
GET LIST(M,Fy);
sfy=sqrt(Fy);
PUT LIST('Is the compression flange laterally braced over its total length?');
GET LIST(ANSWER);
brac=0;
IF ANSWER=0 THEN GO TO lb1;
brac=1;
/* bras=1 full lateral support.*/;
IF Fy=36 THEN t1=24; ELSE t1=.66*Fy;
PUT LIST('Since bracing is no problem and the final member chosen will probably be compact');
PUT LIST(' a good choice of an allowable stress is .66*Fy = ',t1,' ksi');
GO TO lb2;
1b1: IF Fy=36 THEN t1=22; ELSE t1=Fy*.6;
PUT LIST('Since bracing may be a problem a good choice of an allowable stress
is .6*Fy = ',t1,' ksi');
1b2: PUT LIST('Choose a trial allowable stress.');
GET LIST(fa);
S=M*12/fa;
PUT IMAGE(S)(im5);
PUT IMAGE(S)(im1);
agn: PUT IMAGE(1)(imla);
bf,tf,dAf=0;
GET EDIT(ttt)(A(l));
PUT IMAGE(1)(im3);
GET LIST(S);
fat=M*12/S;
PUT IMAGE(1)(im2);
PUT LIST(' (web only = 3 flange only = 2 web & flange = 1 none of these
= 0)?')
GET LIST(ANSWER);
IF ANSWER=2 THEN GO TO 1b5;ELSE test1=ANSWER
pcom=0;
IF ANSWER=1 THEN GO TO 11;
test=95/sfy;
PUT LIST('Is bf/2tf < 95/Fy**.5 = ',test);
GET LIST(ANSWER);
pcom=1;
IF ANSWER=0 THEN GO TO pend;
IF test1=0 THEN GO TO 1b5;
11: IF brac=1 THEN GO TO 1b3;
GET LIST(bf,dAf);
test=76*bf/sfy;
test1=20000/(dAf*Fy);
PUT LIST('Is the compression flange laterally braced closer than 76*bf/Fy**.5
= ',test,' in. ');
PUT LIST(' and 20000/(d/Af)*Fy = ',test1,' in. ');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO 1b5;
1b3: IF pcom=1 THEN GO TO 1b4;
IF $F_y = 36$ THEN $test = 24$; ELSE $test = 0.66*F_y$
PUT LIST('Allowable stress determined by section 1.5.1.4.1 $F_b = 0.66*F_y = $',
'test,' actual stress = $',fat);
t1=test;
IF fat>test THEN PUT LIST('SECTION TRIED IS NOT ADEQUATE!'); ELSE GO TOedd;
GO TO 12;

1b4: IF $bf = 0$ THEN GET LIST(bf);
GET LIST(tf);
test1=Fy*(0.733-.0014*bf/(2*tf)*sfy);
PUT LIST('Allowable stress determined by EQ. 1.5-1 $F_b =$',test1,' actual
stress = $',fat);
t1=test1;
IF fat>test1 THEN PUT LIST('SECTION TRIED IS NOT ADEQUATE!'); ELSE GO TOedd;
GO TO 12;

1b5: PUT LIST('Paragraph 1.5.1.4.6a will determine the allowable stress in
compression.');
PUT LIST('Input the following:');
GET LIST(L,rT);
IF $dAf = 0$ THEN GET LIST(dAf,bf);
t1=L*12/rT;
test=sqrt(102000/Fy);
IF t1<test THEN GO TO 1b7;
test1=sqrt(510000/Fy);
IF t1>=test1 THEN GO TO 1b8;
PUT LIST('L/rT is between $(102000*Cb/Fy)^{0.5} = $',test,' and
$(510000*Cb/Fy)^{0.5} = $',test1);
PUT LIST('Therefore the allowable compression stress on the extreme fiber is
the larger of');
t1=(2/3-Fy*(L*12/rT)**2/1530000)*Fy;
PUT LIST(' $F_b = (2/3 - F_y(L/rT)^{2}/1530000*Cb)F_y = $',t1);
PUT LIST(' and');
test=12000/(L*12*dAf);
PUT LIST(' $F_b = 12000*Cb/Ld/Af = $',test);
IF $F_y = 36$ THEN test1=22; ELSE test1=Fy*.6;
PUT LIST(' not to exceed $F_b = 0.6*F_y = $',test1,' ksi.');
tl=max(tl,test);
tl=min(tl,test);
PUT LIST(' use: Fb = ',tl);
GO TO 1b9;

1b8:
PUT LIST('L/rT = ',tl,' which is greater than (510000*Cb/Fy)**.5 = ',test1);
test1=12000/(L*12*dAf);
test=170000/(L*12*rT)**2;
PUT LIST('Therefore the allowable compression stress on the extreme fiber is
the larger of');
PUT LIST(' Fb = 170000*Cb/(L/rT)**2 = ',test);
PUT LIST(' and');
PUT LIST(' Fb = 12000*Cb/Ld/Af = ',test1);
IF Fy=36 THEN t1=22; ELSE t1=.6*Fy;
PUT LIST(' not to exceed .6*Fy = ',t1);
test=max(test,test1);
tl=min(tl,test);
PUT LIST(' use: Fb = ',t1);
GO TO 1b9;

1b7:
PUT LIST('L/rT = ',t1,' which is less than (102000*Cb/Fy)**.5 = ',test);
IF Fy=36 THEN t1=22; ELSE t1=.6*Fy;
PUT LIST('Therefore the allowable stress on the extreme fiber is equal to
.6*Fy = ',t1);

1b9:
PUT IMAGE(fat,t1)(im4);
IF t1<fat THEN PUT LIST('SECTION NOT ADEQUATE'); ELSE GO TO edd;
GO TO 12;

edd:
PUT LIST('Section is adequate actual stress = ',fat,' allowable stress
= ',t1);

12:
test=t1/fat;
PUT LIST('f-all/f-act = ',test);
PUT LIST('Do you want to try a new member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO 1b6;
PUT LIST('Would you like to try a new design problem?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO start;
RETURN;

pend:
PUT LIST("");
PUT LIST('Because of a violation of Section 1.9 the member that you have chosen');
PUT LIST(' will not be 100% effective in resisting the load. The reduction in');
PUT LIST(' section may be calculated as per Appendix C. This procedure has not');
PUT LIST(' been included in BENTS^3. Therefore you have the option of calculating');
PUT LIST(' this reduction by hand or of trying a new member.');
PUT LIST('Would you like to try a new member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb2;
RETURN;

lb6:
PUT LIST('Do you know which member?');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO lb2; ELSE GO TO agn;
END BENTS3;
Program Name:

BENDSN

Purpose:

BENDSN will investigate and design beams using a minimum amount of input and giving just enough output to define the design route. It should be used only after the fundamentals of beam design are understood. It is ideally suited for the design of structures and parametric studies.

Limitations:

Only W members bent about the strong axis may be investigated or designed using BENDSN.

Prerequisite:

Execution of BENTST

Data Required Before Execution:

A bending design and/or investigation problem must be defined before execution of BENDSN. The length between bracing against twist (L) and the bending coefficient C_b must be defined.
Define the parameters required during the execution of BENDSN.

Investigation (1)
Design (2)

1

Go to DESIGN

INVESTIGATION

Interact with the student in the investigation of the member.

Request only input values not previously defined.

yes

Another investigation problem using the same member?

no

Request new input values.

yes

Another investigation problem using a new member?

no

Go to DESIGN

yes

Design?

no

STOP
Input an assumed trial allowable stress.

Choose a trial member based on the trial stress.

Interact with the student in the investigation of the adequacy of the member.

Do you know which member?

New member?

Investigate this member with new loads?

New design problem?

Investigation problem?

Go to INVESTIGATION

STOP
Detailed Flow Chart BENDSN

START

CALL BENDT1

Investigation (1)
Design (2)

2

dsn

Set $F_y, b_f, t_f, dA_f, dt_w, r_T, p_{com}, ANSWER$ & S to zero.

CALL BENDS2($F_y, b_f, t_f, dA_f, dt_w, r_T, p_{com}, ANSWER, S$)

ANSWER = -1
(investigation after design)

yes

no

yes

Design

no

yes

Investigation

no

no

STOP

CALL BENDS3

yes

Design

no

yes

STOP

no

yes

Design

no

yes

STOP

no

yes

STOP

no

yes

STOP
External Procedure BEND81

Define the parameters required during the execution of BENDSN.

RETURN
External Procedure BENDS3

begin

Set variables to zero.
pcom = -1

again

Input Fy and S if not previously defined.

pcom = 2

yes

Member is not compact.

Go to lbl2

no

Member is compact.

pcom = 0 compact

Go to lbl1

Member is partially compact.

Check the compactness of the member.

pcom = 0 compact

pcom = 1 partially compact

pcom = 2 non-compact web.
Calculate the allowable stress based on
.66*Fy if pcom ≠ 1
Eq. 1.5-5a if pcom = 1
Calculate the allowable stress based on paragraph 1.5.1.4.6.

Print the input values.

Another investigation using this member. yes Go to again
no

New investigation problem? yes Go to begin
no

RETURN
External Procedure \texttt{BENDS2}(Fy,bf,tf,dAf,dtw, rT,pcom,ANSWER,S)

\begin{itemize}
\item \textbf{begin}
\item \textbf{start}
\item Input M \& Fy and set L, and Cb equal to zero.
\item From a trial allowable stress choose a trial member.
\item \textbf{agn}
\item Input S.
\item Check the compactness of the member:
 \begin{itemize}
 \item pcom = 0 compact
 \item pcom = 1 partially compact
 \item pcom = 2 non-compact web.
 \end{itemize}
\end{itemize}
Calculate the allowable stress based on
.66*Fy if pcom ≠ 1
Eq. 1.5-5a if pcom = 1.
Calculate the allowable stress as per paragraph 1.5.1.4.6.

Check the adequacy of the member.

New member? yes
no

Do you know which member? no
Yes
Go to start

New design? no
yes
RETURN

Investigation of this member? no
yes
ANSWER = -1
RETURN

Go to begin
External Procedure \text{BENDS1}(F_y,b_f,t_f,d_Af,d_tw,r_T, S,p_{com})

\begin{itemize}
 \item Input \(M\) and set \(L\) and \(C_b\) to zero.
 \item If \(p_{com} = 2\), go to lb2
 \item Else if par. 1.5.1.4.1e is not OK, go to lb2
 \item Else, go to lb7
 \item Calculate the allowable stress based on
 \(0.66 \times F_y\) if \(p_{com} \neq 1\)
 \(\text{Eq. 1.5-5a}\) if \(p_{com} = 1\).
\end{itemize}

Go to edd
Calculate the allowable stress as per paragraph 1.5.1.4.6.

Print input values.

Check the adequacy of the member.

Investigation using this member? yes Go to begin no RETURN
/*PROGRAM BENDSN */
DECLARE BENDT1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENDT2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENDS1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENDS2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BENDS3 ENTRY EXT KEY(whmIII) LIB(USER2);
CALL BENDT1;
PUT LIST('Type of problem (investigation = 1 Design = 2)');
GET LIST(ANSWER);
IF ANSWER=2 THEN GO TO dsn;
 inv:
 CALL BENDS3;
 PUT LIST('Would you like to try a design problem?');
 GET LIST(ANSWER);
 IF ANSWER=0 THEN GO TO ed;
 dsn:
 Fy,bf,tf,dAf,dtw,rT,pcom,ANSWER,S=0;
 CALL BENDS2(Fy,bf,tf,dAf,dtw,rT,pcom,ANSWER,S);
 IF ANSWER=-1 THEN CALL BENDS1(Fy,bf,tf,dAf,dtw,rT,S,pcom);
 PUT LIST('Would you like to try an investigation problem?');
 GET LIST(ANSWER);
 IF ANSWER=1 THEN GO TO inv;
 PUT LIST('Would you like to try a design problem?');
 GET LIST(ANSWER);
 IF ANSWER=1 THEN GO TO dsn;
 ed:
 END ;
BENDT1: PROCEDURE;
 PUT LIST('The following are parameters which are required in the execution of BENDSN:');
 PUT LIST(' Fy - yield stress of the steel (ksi).');
 PUT LIST(' bf - width of the flange (in.).');
 PUT LIST(' tf - thickness of the flange (in.).');
 PUT LIST(' dAf - d/Af or the depth of the member divided by the area of the flange (1/in.).');
 PUT LIST(' dtw - d/tw or the depth of the member divided by the thickness of the flange.');
 PUT LIST(' rT - radius of gyration of a section comprising the compression flange plus 1/3 the compression web area taken about an axis in the plane of the web (in.).');
 PUT LIST(' L - distance between bracing of the compression flange (ft.).');
 PUT LIST(' S - section modulus of the member (in**3).');
 PUT LIST(' Cb = 1.75 + 1.05(M1/M2) * 0.3(M1/M2)**2 but < 2.3 where M1 and M2 are the smaller and larger moment at the ends of the unbraced length.');
 PUT LIST(' If M1 and M2 are exceeded in this length Cb = 1.');
 PUT LIST(' ANSWER - usually requiring a yes or no indication by 1 = yes or 0 = no.');
 RETURN;
END BENDT1;
BENDS1: PROCEDURE (Fy, bf, tf, dAf, dtw, rT, S, pcom);
 DECLARE ttt CHAR(1);
 DECLARE t1 DEC(4);
 DECLARE t2 DEC(4);
 DECLARE fat DEC(4);
 DECLARE fa DEC(4);
 begin: PUT LIST('');
 PUT LIST('');
 PUT LIST('');
 PUT LIST('');
 IMAGE;
 * * * * * IDENTIFICATION * * * * * *
 PUT IMAGE(1)(im1);
 GET EDIT(ttt)(A(1));
 PUT LIST('Design Moment (ft.kips).');
 L,Cb=0;
 GET LIST(M);
 PUT LIST('S = ',S);
 PUT LIST('Fy = ',Fy);
 sfy=sqrt(Fy);
 fat=M*12/S;
 IF pcom=2 THEN GO TO 1b2;
 /* pcom = 1 if partially compact. pcom = 2 if non compact. */;
1b1: PUT LIST('Is the compression flange fully laterally supported?');
 GET LIST(ANSWER);
 IF ANSWER=1 THEN GO TO 1b7:
 IF bf=0 THEN GET LIST(bf); ELSE PUT LIST('bf = ',bf);
 IF dAf=0 THEN GET LIST(dAf); ELSE PUT LIST('dAf = ',dAf);
 t1=76*bf/sfy;
 t2=20000/(dAf*Fy);
 t1=min(t1,t2);
 IF L=0 THEN GET LIST(L); ELSE PUT LIST('L = ',L);
 IF L*12>t1 THEN GO TO 1b2;
 /* par 1.5.1.4.1 or 1.5.1.4.2 */;

lb7: IF pcom=1 THEN GO TO lb3;
 PUT LIST(' Paragraph 1.5.1.4.1 determines the allowable stress.');
 fa=.66*Fy;
 IF Fy=36 THEN fa=24;
 GO TO edd;
lb3: IF bf=0 THEN GET LIST(bf);
 IF tf=0 THEN GET LIST(tf);
 PUT LIST(' Equation 1.5-5 determines the allowable stress.');
 fa=Fy*(.733-.0014*bf/(2*tf)*sfy);
 GO TO edd;
lb2: PUT LIST('INPUT:');
 IF L=0 THEN GET LIST(L);
 IF rT=0 THEN GET LIST(rT); ELSE PUT LIST('rT = ',rT);
 t1=L*12/rT;
 GET LIST(Cb);
 IF t1=sqrt(102000*Cb/Fy) THEN GO TO lb4;
 IF dAf=0 THEN GET LIST(dAf);
 t2=12000*Cb/(L*12*dAf);
 IF t1>sqr(510000*Cb/Fy) THEN GO TO lb5;
 t1=(2/3-Fy*t1**2/(1530000*Cb)*Fy);
 GO TO lb6;
lb5: t1=170000*Cb/t1**2;
lb6: t1=max(t1,t2);
 IF Fy=36 THEN t2=22; ELSE t2=.6*Fy;
 fa=min(t1,t2);
 PUT LIST(' Paragraph 1.5.1.4.6a determines the allowable stress.');
 GO TO edd;
lb4: IF Fy=36 THEN fa=22; ELSE fa=.6*Fy;
 PUT LIST(' Paragraph 1.5.1.4.6b determines the allowable stress.');
edd: PUT LIST('Allowable stress = ',fa,' Actual stress = ',fat);
 t1=fa/fat;
 PUT LIST(' f-all/f-act = ',t1);
 IF bf>0 THEN PUT LIST('bf = ',bf);
 IF tf>0 THEN PUT LIST('tf = ',tf);
IF $dA_f > 0$ THEN PUT LIST('dA_f = ',dA_f);
IF $rT > 0$ THEN PUT LIST('rT = ',rT);
IF $dtw > 0$ THEN PUT LIST('dtw = ',dtw);
PUT LIST('Would you like to try another investigation problem using this member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO begin;
RETURN ;
END BENDS1;
PROCEDURE (Fy,bf,tf,dAf,dtw,rT,pcom,ANSWER,S);
DECLARE ttt CHAR(1);
DECLARE t1 DEC(4);
DECLARE t2 DEC(4);
DECLARE fat DEC(4);
DECLARE fa DEC(4);
PUT LIST(' ');
PUT LIST(' ');
PUT LIST(' ');
PUT LIST(' ');
begin:
* * * * * IDENTIFICATION * * * * *
PUT IMAGE(1)(im1);
GET EDIT(ttt)(A(1));
PUT LIST('Design Moment (ft.kips).');
L,Cb=0;
GET LIST(M);
PUT LIST('Yield stress (KSI).');
GET LIST(Fy);
sfy=sqrt(Fy);
start:
PUT LIST('Assume an allowable stress (ksi).');
GET LIST(fa);
S=M*12/fa;
PUT LIST('Section modulus based on the assumed stress = S = ',S,' in**3.');
PUT LIST('Try a W section with approximately this section modulus.');
agn:
PUT IMAGE(1)(im1);
GET EDIT(ttt)(A(1));
PUT LIST('What is the section modulus of the member (in**3).');
bf,tf,dAf,dtw,rT,S=0;
GET LIST(S);
fat=M*12/S;
PUT LIST('Is the member compact?');
pcom=0;
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO 1b1; ELSE pcom=2;
/* pcom = 2 for non compact member. */;
PUT LIST('INPUT:');
GET LIST(bf,tf);
IF bf/(2*tf)>95/sfy THEN GO TO pend;
t1=412/sfy;
GET LIST(dtw);
IF dtw>t1 THEN GO TO 1b2;
pcom=1;
/* pcom = 1 if partially compact. */;
1b1: IF L>0 THEN GO TO 1b8;
PUT LIST('Is the compression flange fully laterally supported?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO 1b7;
1b8: IF bf=0 THEN GET LIST(bf);
GET LIST(dAf);
t1=76*bf/sfy;
t2=20000/(dAf*Fy);
t1=min(t1,t2);
IF L=0 THEN GET LIST(L); ELSE PUT LIST('L = ','L);
IF L*12>t1 THEN GO TO 1b2;
/* par 1.5.1.4.1 or 1.5.1.4.2 */;
1b7: IF pcom=1 THEN GO TO 1b3;
PUT LIST('Paragraph 1.5.1.4.1 determines the allowable stress.');
fa=.66*Fy;
IF Fy=36 THEN fa=24;
GO TO edd;
1b3: IF bf=0 THEN GET LIST(bf);
IF tf=0 THEN GET LIST(tf);
PUT LIST('Equation 1.5-5 determines the allowable stress.');
fa=Fy*(.733-.0014*bf/(2*tf)*sfy);
GO TO edd;
1b2: PUT LIST('INPUT:');
IF L=0 THEN GET LIST(L);
GET LIST(rT);
tl=L*12/rT;
IF Cb=0 THEN GET LIST(Cb); ELSE PUT LIST('Cb = ',Cb);
IF tl<sqrt(102000*Cb/Fy) THEN GO TO lb4;
IF dAf=0 THEN GET LIST(dAf);
t2=12000*Cb/(L*12*dAf);
IF tl>sqrt(510000*Cb/Fy) THEN GO TO lb5;
t1=(2/3-Fy*tl**2/(1530000*Cb))*Fy;
GO TO lb6;

lb5: t1=170000*Cb/tl**2;
lb6: t1=max(t1,t2);
IF Fy=36 THEN t2=22; ELSE t2=.6*Fy;
fa=min(t1,t2);
PUT LIST('Paragraph 1.5.1.4.6a determines the allowable stress.');
GO TO edd;

lb4: IF Fy=36 THEN fa=22; ELSE fa=.6*Fy;
PUT LIST('Paragraph 1.5.1.4.6b determines the allowable stress.');
GO TO edd;

edd: PUT LIST('Allowable stress = ',fa,' Actual stress = ',fat);
tl=fa/fat;
PUT LIST(' f=al/l/f-act = ',tl);
PUT LIST('Would you like to try a new member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb10;
PUT LIST('Would you like to try an investigation of this member with a new loading?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb9;
PUT LIST('Would you like to try a new design problem?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO begin;
RETURN ;

lb9: ANSWER=-1;
RETURN ;
PEND:

PUT LIST('.');
PUT LIST('Because of a violation of Section 1.9 the member you have chosen');
PUT LIST(' will not be 100% effective in resisting the load. The reduction in');
PUT LIST(' section may be calculated as per Appendix C. This procedure has not');
PUT LIST(' been included in BENDSN. Therefore you have the option of calculating');
PUT LIST(' this reduction by hand or of trying a new member.');
PUT LIST('Would you like to try a new member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO start;
RETURN;

1B10:

PUT LIST('Do you know which member?');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO start;
GO TO agn;
END BENDS2;
BEGIN:
PROCEDURE;
DECLARE ttt CHAR(1);
DECLARE t1 DEC(4);
DECLARE t2 DEC(4);
DECLARE t4 DEC(4);
DECLARE fa DEC(4);
begin:
PUT LIST(' ');
bf,tf,dtw,Fy,S=O;
pcom=-1;
again:
PUT LIST(' ');
iml:
* * * * * IDENTIFICATION * * * * *
PUT IMAGE(1)(iml);
GET EDIT(ttt)(A(1));
L,Cb=O;
PUT LIST('Yield stress (ksi).');
IF Fy=0 THEN GET LIST(Fy); ELSE PUT LIST('Fy = ',Fy);
sfy=sqrt(Fy);
PUT LIST('Section Modulus S (in**3)');
IF S=0 THEN GET LIST(S); ELSE PUT LIST('S = ',S);
IF pcom=2 THEN PUT LIST('Member is not compact'); ELSE GO TO lb9;
GO TO lb2;
lb9:
IF pcom=-1 THEN GO TO lb8;
IF pcom=0 THEN PUT LIST('Member is compact.');
IF pcom=1 THEN PUT LIST('Member is partially compact. ');
GO TO lb1;
lb8:
PUT LIST('Is the member compact? ');
pcom=0;
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb1;
pcom=2;
PUT LIST('INPUT: ');
GET LIST(bf,tf);
IF bf/(2*tf)>95/sfy THEN GO TO pend;
t1=412/sfy;
GET LIST(dtw);
IF dtw>t1 THEN GO TO 1b2;
pcom=1;
/* pcom = 1 if partially compact. */;

1b1:
PUT LIST('Is the compression flange fully laterally supported?
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO 1b7;
IF bf=0 THEN GET LIST(bf);
IF dAf=0 THEN GET LIST(dAf);
t1=76*bf/sfy;
t2=20000/(dAf*Fy);
t1=min(t1,t2);
IF L=0 THEN GET LIST(L); ELSE PUT LIST('L = ',L);
IF L*12>t1 THEN GO TO 1b2;
/* par 1.5.1.4.1 or 1.5.1.4.2 */;

1b7:
IF pcom=1 THEN GO TO 1b3;
PUT LIST(' Paragraph 1.5.1.4.1 determines the allowable stress. ');
fa=.66*Fy;
IF Fy=36 THEN fa=24;
GO TO edd;

1b3:
IF bf=0 THEN GET LIST(bf);
IF tf=0 THEN GET LIST(tf);
PUT LIST(' Equation 1.5-5 determines the allowable stress. ');
fa=Fy*(.733-.0014*bf/(2*tf)*sfy);
GO TO edd;

1b2:
PUT LIST('INPUT: ');
IF L=0 THEN GET LIST(L);
IF rT=0 THEN GET LIST(rT);
t1=L*12/rT;
GET LIST(Cb);
IF t1<sqrt(102000*Cb/Fy) THEN GO TO 1b4;
IF dAf=0 THEN GET LIST(dAf);
t2=120000*(L*12*dAf);
IF t1>sqrt(150000*Cb/Fy) THEN GO TO 1b5;
t1=(2/3-Fy*t1**2/(1530000*Cb))*Fy;
GO TO 1b6;
t1=170000*Cb/t1**2;

IF Fy=36 THEN t2=22; ELSE t2=.6*Fy;
fa=min(t1,t2);
PUT LIST('Paragraph 1.5.1.4.6a determines the allowable stress.');
GO TO edd;

IF Fy=36 THEN fa=22; ELSE fa=.6*Fy;
PUT LIST('Paragraph 1.5.1.4.6b determines the allowable stress.');
GO TO edd;

PUT LIST('Allowable stress = ',fa);
tl=fa*S/12;

IF bf>O THEN PUT LIST(bf);
IF tf>O THEN PUT LIST(tf);
IF dtw>O THEN PUT LIST(dtw);
IF dAf>O THEN PUT LIST(dAf);
IF rT>O THEN PUT LIST(rT);

PUT LIST('Allowable bending moment = ',t1,' ft.kips.');</p>

PUT LIST('Would you like to try another investigation problem using this member?');</p>

GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO again;
PUT LIST('Would you like to try another investigation problem?');</p>

GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO begin;
RETURN;

PEND: PUT LIST(' ');
PUT LIST('Would you like to try a new member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO begin;
RETURN;
END BENDS3;
Program Name:

BIXDSN

Purpose:

Program BIXDSN will interact with the user in the design of beam-columns. It may be used to design members subjected to any combination of bending about the strong axis, bending about the weak axis and compression. The use of BIXDSN is intended to give experience in design since the details of calculations of each part of BIXDSN has been covered in previous programs.

Limitations:

Only W sections may be designed using BIXDSN.

Prerequisite:

Execution of BENDSN and COLTST. Read Section 1.6 of the AISC Specifications. The student must have knowledge of bending about the weak axis.

Data Required Before Execution:

A design and/or investigation problem must be defined before execution of BIXDSN.

- \(L \) - length between bracing of compression flange.
- \(L_s \) - length between bracing in strong direction.
- \(L_w \) - length between bracing in weak direction.
- \(K_s \) - effective length factor strong direction.
- \(K_w \) - effective length factor weak direction.
- \(C_w \) - bending coefficient (ref. P. 5-19).
- \(C^B \) - bending coefficient (ref. P. 5-23).
- \(C^m_x \) - bending coefficient (ref. P. 5-23).
- \(C^m_y \) - bending coefficient (ref. P. 5-23).
Overall Flow Chart BIXDSN

START

Print a general review of interaction equations. Give a summary of the AISC Specification's reasoning behind equation 1.6-1a, 1.6-1b and 1.6-2, and the general application of each.

Define the parameters required during the execution of BIXDSN.

BEGIN

Input the beam-column configuration if changed from previous problem.

Input the loads if changed from previous problem.

Do you know the member?

yes

Input the member properties if different from previous problem.

no

Input the trial allowable bending and compressive stress.

Print a table of required section modulus and area for 80, 50, and 20% bending.

Choose a W member.
Calculate the allowable stresses in bending weak & strong, and compression.

Print the resulting terms in the applicable interaction equations.

Go to BEGIN
START

CALL BIXTT1
CALL BIXTT2
CALL BIXTT3

CALL COLCON
CALL LOADS
CALL insert
CALL MEMPRO

AGAIN

CALL ttl
CALL print

CALL BIXCOM(Fy, appc, rx, ry, Ls, Lw, Ks, Kw, Fa, bf, tf, d, tw)
(calculates the allowable stress in compression)

appc = -10

yes

Go to err

K*L/r exceeds 200

no

appc = 1

yes

CALL BIXEXT(ANSWER)

Appendix C message.

no
CALL BIXBNS(Fy,bf,tf,d,tw,fa,dAf,L,rT,Fbx,appc,Cb,Fbx1)
(par. 1.5.1.4.1 and 2)

CALL BIXBNW(bf,tf,Fy,Fby,appc)
(par. 1.5.1.4.3)

CALL BIXBSS(Fy,bf,tf,d,tw,fa,dAf,L,rT,Fbx,appc,Cb,Fbx1)
(par. 1.5.1.4.6)
CALL BIEQ2 (Mxa, Mxb, Mya, Myb, d, bf, Ix, Iy, Fa, fa, Fbx, Fby) (Eq. 1.6-2)

CALL BIEQ1 (Mxa, Mxb, Mya, Myb, d, bf, Ix, Iy, Ls, Lw, Ks, Kw, rx, ry, fa, Fa, Fbx, Fbxl, Fby, Fy, Cmx, Cmy) (Eq. 1.6-1)

CALL INSERT
CALL MEMPRO

New member properties? yes

New loads? yes

CALL LOADS
CALL COLCON

New column configuration? yes

no

CALL COLCON

Were data changes? no

en

yes

Go to again

STOP
Internal Procedure COLCON

Input L, Ls, Lw, Ks, Kw

RETURN

Internal Procedure LOADS

Input P, Mxa, Mxb, Mya, Myb, Cb, Cmx, Cmy

RETURN

Internal Procedure MEMPRO

Input Py, bf, tf, d, tw, Ix, Iy, AREA

Calculate rx, ry, dAf, rT

RETURN
Internal Procedure `insrt`

- **Do you know the member?**
 - no: CALL TRIAL(P,Mxa,Mxb)
 - yes: RETURN

Internal Procedure `ttl`

- Skip spaces and print line of `*`.

- RETURN

Internal Procedure `print`

- Print input

- RETURN
External Procedure BIXTT1

Print a general review of interaction equations. Give a summary of the AISC Specification's reasoning behind equation 1.6-1a, 1.6-1b and 1.6-2, and the general application of each.

RETURN

External Procedure BIXTT2 & 3

Define the parameters required during the execution of BIXDSN.

RETURN

External Procedure TRIAL(P,Mxa,Mxb)

Input F_b & F_a

Print table of required section modulus and area for 80, 50, and 20% bending.

RETURN
External Procedure BIXEXT(ANSWER)

Print message about Appendix C.

New member?

yes

RETURN

no
Calculate the allowable stress in compression by Eq. 1.5-2.

External Procedure BIXCOM($F_y, appc, rx, ry, Ls, Lw, Ks, Kw, Fa, bf, tf, d, tw$)

Is par. 1.9 OK? no → appc = 1 yes → RETURN

Calculate $C_c (K \times L/r)$

$(K \times L/r)_{max} \geq 200$? yes → Print message no → $(K \times L/r)_{max} \geq C_c$

Calculate the allowable compressive stress by Eq. 1.5-1.

RETURN
External Procedure BIXBNS(Fy, bf, tf, d, tw, fa, dAf, L, rT, Fbx, appc, Cb, Fbx1)

Check compactness of the member.

skip = 1 partially compact
skip = 0 compact
RETURN if non-compact in web and compact in flange (Fbx = 0).

Is par. 1.5.1.4.1e OK?

no: RETURN

Fbx = 0

yes

Calculate the allowable bending stress strong axis by \(0.66 \times F_y\) - compact member or Eq. 1.5-5a partially compact member.

RETURN
External Procedure BIXBSS$(F_y, b_f, t_f, d, t_w, f_a, d_{Af}, L_r, T_r, F_{bx}, app_c, C_b, F_{bxl})$

- Calculate the allowable bending stress strong axis for $C_b = C_b$. (par. 1.5.1.4.6 F_{bxl})

- Calculate the allowable bending stress strong axis for $C_b = 1$ (par. 1.5.1.4.6 F_{bxl}).

External Procedure BIXBNW(b_f, t_f, F_y, app_c)

- $b_f/2*t_f > 52.2*F_y^{0.5}$ yes
- $b_f/2*t_f > 95*F_y^{0.5}$ yes

- Calculate the allowable stress in bending weak axis by Eq. 1.5-5b.

- Allowable stress in bending weak axis is $.75*F_y$.

RETURN
External Procedure BIXEQL(Mxa,Mxb,Mya,Myb,d,bf,Ix, Iy,Ls,Lw,Ks,Kw,rx,ry,fa,Fa,Fbx,FbxFbxFbxFy,Cmx,Cmy)

Solve interaction action equations 1.6-1a and 1.6-1b.

RETURN

External Procedure BIXEQL2(Mxa,Mxb,Mya,Myb,d,bf,Ix, Iy,fa,Fa,Fbx,Fby)

Solve interaction action equation 1.6-2.

RETURN
/* PROGRAM BIXDSN */
DECLARE BIXTT1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXTT2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXTT3 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXBNW ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXCOM ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXBNS ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXBSS ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE TRIAL ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXEXT ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXEQ1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BIXEQ2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE t1 DEC(4), t2 DEC(4), t3 DEC(4), t4 DEC(4);
DECLARE ttt CHAR(1);
DECLARE sum1 DEC(4), sum DEC(4), rT DEC(4), rx DEC(4), ry DEC(4);
PUT LIST('Would you like to skip the titles?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO skip;
CALL BIXTT1;
CALL BIXTT2;
CALL BIXTT3;

skip:
CALL COLCOM;
CALL LOADS;
CALL insert;
CALL MEMPRO;

again:
CALL ttl;
PUT LIST(' * * * * IDENTIFICATION * * * * ');
GET EDIT(ttt)(A(1));
CALL print;
CALL ttl;
CALL BIXCOM(Fy,appc,rx,ry,ls,lw,ks,fa,bf,tf,d,tw);
IF appc=-10 THEN GO TO err;
fa=P/AREA;
ANSWER=10;
IF appc=1 THEN CALL BIXEXT(ANSWER);
IF ANSWER=1 THEN GO TO err;
IF ANSWER=0 THEN GO TO en;
CALL ttl;
CALL BIXBNS(Fy,bf,tf,d,tw,fa,dAf,L,rT,Fbx,appc,Cb,Fbx1);
IF appc=1 THEN CALL BIXEXT(ANSWER);
IF ANSWER=1 THEN GO TO err;
IF ANSWER=0 THEN GO TO en;
IF Fbx=0 THEN CALL BIXBSS(Fy,bf,tf,d,tw,fa,dAf,L,rT,Fbx,appc,Cb,Fbx1);
CALL ttl;
CALL BIXBNW(bf,tf,Fy,Fby,appc);
IF appc=1 THEN CALL BIXEXT(ANSWER);
IF ANSWER=1 THEN GO TO err;
IF ANSWER=0 THEN GO TO en;
CALL ttl;
IF fa/Fa>.15 THEN GO TO eg1;
CALL BIXEQ2(Mxa,Mxb,Mya,Myb,d,bf,Ix,Iy,Fa,fa,Fbx,Fby);
GO TO eq2;

eg1: CALL BIXEQ1(Mxa,Mxb,Mya,Myb,d,bf,Ix,Iy,ls,Lw,Ks,Kw,rx,ry,fa,Fa,Fbx,Fby1,Fby,Fy,
 Cmx,Cmy);

eg2: PUT LIST('');
CALL ttl;
PUT LIST('');
PUT LIST('');
PUT LIST('');

err: t1=1;
t2=1;
t3=1;
PUT LIST('Do you want to change the member properties? i.e. Fy,bf,tf,d,tw,Ix,Iy,' ARE); GET LIST(ANSWER);
IF ANSWER=1 THEN CALL insrt; ELSE t1=0;
IF ANSWER=1 THEN CALL MEMPRO;
PUT LIST('Do you want to change the loads? i.e. P,Mxa,Mxb,Mya,Myb,Cb,Cmx,Cmy');
GET LIST(ANSWER);
IF ANSWER=1 THEN CALL LOADS; ELSE t2=0;
PUT LIST('Do you want to change the column configuration? i.e. L,Ls,Lw,Ks,Kw');
GET LIST(ANSWER);
IF ANSWER=1 THEN CALL COLCON; ELSE t3=0;
IF t1+t2+t3<.01 THEN GO TO en;
GO TO again;

COLCON: PROCEDURE;
PUT LIST('');
PUT LIST('Input the column configuration.');
GET LIST(L,Ls,Lw,Ks,Kw);
RETURN;
END COLCON;

LOADS: PROCEDURE;
PUT LIST('Input the loads.');
GET LIST(P,Mxa,Mxb,Mya,Myb,Cb,Cmx,Cmy);
RETURN;
END LOADS;

MEMPRO: PROCEDURE;
PUT LIST('Input the member properties.');
GET LIST(Fy,bf,tf,d,tw,Ix,Iy,AREA);
rx=sqrt(Ix/AREA);
ry=sqrt(Iy/AREA);
dAf=d/(tf*bf);
RT=bf**3*tf/12;
RT=RT+(d/6-tf)*tw**3/12;
RT=sqrt(RT/(bf*tf*(d/6-tf)*tw));
RETURN;
END MEMPRO;

insrt: PROCEDURE;
PUT LIST('Do you know your first trial member?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO lb1;
CALL TRIAL(P,Mxa,Mxb);

lb1: ANSWER=1;
RETURN;
ttl:
PROCEDURE;
 PUT LIST('');
 PUT LIST('************');
 PUT LIST(' ');
 RETURN;
END;

print:
PROCEDURE;
 PUT LIST('Column Configuration');
 PUT LIST('L = ',L);
 PUT LIST('Ls = ',Ls,' Lw = ',Lw);
 PUT LIST('Ks = ',Ks,' Kw = ',Kw);
 PUT LIST(' ');
 PUT LIST('Loads');
 PUT LIST('P = ',P);
 PUT LIST('Mxa = ',Mxa,' Mxb = ',Mxb,' Mya = ',Mya,' Myb = ',Myb);
 PUT LIST('Cb = ',Cb);
 PUT LIST('Cm = ',Cm,' Cmy = ',Cmy);
 PUT LIST(' ');
 PUT LIST('Member Properties');
 PUT LIST('Fy = ',Fy);
 PUT LIST('bf = ',bf,' tf = ',tf,' d = ',d,' tw = ',tw);
 PUT LIST('rT = ',rT);
 PUT LIST('Ix = ',Ix,' Iy = ',Iy);
 PUT LIST('AREA = ',AREA);
 PUT LIST('rx = ',rx,' ry = ',ry);
 RETURN;
END;

en:
PUT LIST('This concludes BIXDSN.');
PROCEDURE;
PUT LIST('');
PUT LIST('Program BIXDSN will review and interact with the user in the design of Beam-Columns.');
PUT LIST('');
PUT LIST('Before proceeding the user must have covered beam design (BENTST and BENDSN) and column');
PUT LIST(' design (COLTST) and have read Section 1.6-1 in the AISC Specifications.');
PUT LIST('');
PUT LIST('Beam-Columns are members subjected simultaneously to bending and axial loads.');
PUT LIST(' Basically, a Beam-Column design is satisfactory if the stresses satisfy some type');
PUT LIST(' of interaction equation. An interaction equation is usually of the form');
PUT LIST('');
PUT LIST('fa fbx fby');
PUT LIST(' -- + --- + --- <= 1.0');
PUT LIST(' Fa Fbx Fby');
PUT LIST(' where');
PUT LIST(' f = actual stress');
PUT LIST(' F = allowable stress');
PUT LIST('');
PUT LIST('Note that each term of the equation represents a ratio of actual to allowable');
PUT LIST(' stress. Each of these ratios may be viewed as the percent of the member resisting');
PUT LIST(' that type of load, ie fa/Fa = .2 says 20% of the member is used by the');
PUT LIST(' axial load and only 80% is left to resist bending. This percentage will be used later');
PUT LIST(' to perform design');
PUT LIST('');
For the design of combined stresses the AISC Specifications give three interaction equations:

Eq. 1.6-1a&b and 1.6-2. All of the form given above. Equation 1.6-1a has an amplification factor applied to the bending terms. This factor is $C_m/(1 - f_a/F_e)$ and is applied to F_b account for the increase in bending moment due to the deflection, i.e. $P \Delta$ effect. Equation 1.6-1a is a stability equation, ie it accounts for buckling. In it F_b, the allowable stress in bending, is calculated based on $C_b = 1$. The actual stress f_b is calculated based on the bending moment as defined in the third column of Table C 1.6.1.1 page 5-131. Equation 1.6-1b is a yield equation or joint equation, ie it accounts for the yield at the joints. In it F_b is calculated based on C_b as defined for bending. As above the actual stress f_b is calculated as per Table C 1.6.1.1.'
BIXTI2: PROCEDURE;
im1: IMAGE;
 * * * * * * * * * * * *
PUT LIST(' ');
PUT LIST('Input to Bixdsn is divided into three groups.');
PUT IMAGE(1)(im1);
PUT LIST(' Column Configuration');
PUT LIST('L - distance between bracing against twist of the compression flange (ft.).');
PUT LIST('Ls - distance between bracing against lateral displacement of the member in the strong direction (ft.).');
PUT LIST('Lw - distance between bracing against lateral displacement of the member in the weak direction (ft.).');
PUT LIST('Ks - effective length factor in the strong direction.');
PUT LIST('Kw - effective length factor in the weak direction.');
PUT IMAGE(1)(im1);
PUT LIST(' Loads');
PUT LIST('P - axial load (kips).');
PUT LIST('Mx - applied moment about the x or strong axis of the beam (ft-kips).');
PUT LIST('Mxa and Mxb refers to the moment applicable in equation 1.6-la');
PUT LIST(' and 1.6-lb, respectively. Ref. column 3 of Table C 1.6.1.1 page 5-131.');
PUT LIST('My - applied moment about the y or weak axis of the beam (ft-kips).');
PUT LIST('Cb - Cb = 1.75 + 1.05*(M1/M2) + 0.3*(M1/M2)**2 <= 2.3 where M1 is the smaller and M2');
PUT LIST(' the larger bending moment at the ends of the unbraced length. Ref p. 5-19 and 5-104.');</nPUT LIST('Cmx - a coefficient to account for sidesway effects in the x or strong direction.');
PUT LIST(' Cmx - Ref p. 5-23 and 5-131.');
PUT LIST('Cmy - a coefficient to account for sidesway effects in the y or weak direction.');</nPUT LIST(' Cmy - Ref p. 5-23 and 5-131.');
PUT IMAGE(1)(im1);
PUT LIST(' Member Properties');
PUT LIST('Fy - yield stress of the steel (ksi).');
PUT LIST('bf - width of the flange (in.).');
PUT LIST('d - total depth of the member (in.).');
PUT LIST('tw - thickness of the web (in.).');
PUT LIST('Ix - moment of inertia about the x or strong axis (in**4).');
PUT LIST('ly - moment of inertia about the y or weak axis(in**4).');
PUT LIST('AREA - cross section area of the member (in**2).');
RETURN ;
END ;
PROCEDURE;

IMAGE;
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
BIXEXT: PROCEDURE (ANSWER);
PUT LIST(' ');
PUT LIST('Because of a violation of Section 1.9 the member that you have chosen');
PUT LIST('will not be 100% effective in resisting the load. The reduction in');
PUT LIST('section may be calculated as per Appendix C. This procedure has not');
PUT LIST('been included in BIXDSN. Therefore you have the option of calculating');
PUT LIST('this reduction by hand or of trying a new member.');
PUT LIST('Would you like to try a new member?');
GET LIST(ANSWER);
RETURN;
END;
TRIAL: PROCEDURE (P,Mxa,Mxb);
PUT LIST('Based on your experience in beam and column design assume an allowable');
PUT LIST(' bending stress and compression stress.');
GET LIST(Fb,Fa);
Mx=max(Mxa,Mxb);
t1=P/Fa;
t2=Mx*12/Fb;
PUT LIST('Percent of allowable Section Area');
PUT LIST(' load used by Modulus');
PUT LIST(' bending');
im1: IMAGE;
---.----.---.
t3=80;
t2=t2/8;
t1=t1/2;
PUT IMAGE(t3,t2,t1)(im1);
t3=50;
t2=t2*80/50;
t1=t1*20/50;
PUT IMAGE(t3,t2,t1)(im1);
t3=20;
t2=t2*50/20;
t1=t1*50/80;
PUT IMAGE(t3,t2,t1)(im1);
PUT LIST('Based on the above chart choose a W member. ');
RETURN ;
END TRIAL;
BIXCOM: PROCEDURE (Fy,appc,rx,ry,ls,tw,ks,kw,fa,bf,tf,d,tw);
 DECLARE ttt CHAR(1);
 DECLARE t1 DEC(4), Cc DEC(4), t2 DEC(4);
 PUT LIST('Find the allowable compressive stress.');
 sfy=sqrt(Fy);
 appc=0;
 IF bf/(2*tf)>95/sfy THEN GO TO pend;
 IF (d-2*tf)/tw>253/sfy THEN GO TO pend;
 GO TO cont;
 pend: appc=1;
 RETURN ;
 cont: Cc=sqrt(2*9.86959*29000/Fy);
 PUT LIST('Cc = (2 (pi)**2*E/Fy)**.5 = ',Cc);
 t1=Kw*Lw*12/ry;
 t2=Ks*Ls*12/rx;
 PUT LIST('K*L/r weak = ',t1,' strong = ',t2);
 IF t1>t2 THEN GO TO lb2;
 PUT LIST('Strong axis controls the allowable stress.');
 GO TO lb3;
 lb2: PUT LIST('Weak axis controls the allowable stress.');
 lb3: t1=max(t1,t2);
 IF t1>200 THEN GO TO lb6;
 IF t1>Cc THEN GO TO lb4;
 PUT LIST('Allowable stress set by Eq 1.5-1.');
 t2=t1**2;
 t3=t2*t1;
 c2=Cc**2;
 c3=Cc**3;
 t1=(1-t2/(2*c2))*Fy/(5/3+3*t1/(8*Cc)-t3/(8*c3));
 GO TO lb5;
 lb4: PUT LIST('Allowable stress set by Eq 1.5-2.');
 t1=12*9.86959*29000/(23*t1**2);
 lb5: PUT LIST('Fa = ',t1);
 Fa=t1;
 RETURN ;
lb6: PUT LIST('K*L/r exceeds 200 member cannot be used.');
appc=-10;
RETURN ;
END ;
PROCEDURE (Fy,bf,tf,d,tw,fa,dAf,L,rT,Fbx,appc,Cb,Fbxl);
DECLARE ttt CHAR(1);
DECLARE test1 DEC(4);
DECLARE test DEC(4);
DECLARE t1 DEC(4);
appc=0;
PUT LIST('Find the allowable bending stress strong axis.');
Fbx=0; skip=0;
sfy=sqrt(Fy);
t1=52.2/sfy;
IF bf/(2*tf)<=t1 THEN GO TO lb1;
t1=95/sfy;
IF bf/(2*tf)>t1 THEN GO TO pend;
/* skip= 1 member is partially compact. */;
skip=1;
/* paragraph d */;
lb1:
IF fa/Fy>.16 THEN t1=257/sfy; ELSE t1=412/sfy*(1-2.33*fa/Fy);
IF d/tw>t1 THEN GO TO lb3;
IF skip=1 THEN GO TO s1;
PUT LIST('The member is COMPACT i.e. no local buckling will occur. ');
GO TO s2;
s1:
PUT LIST('The member is partially compact. ');
s2:
PUT LIST(' ');
t1=76*bf/sfy;
t2=20000/(dAf*Fy);
t1=min(t1,t2);
IF L*12>t1 THEN GO TO lb3;
t1=.66*Fy;
IF Fy=36 then t1=24;
IF skip=1 THEN GO TO lb4;
PUT LIST('The allowable stress in tension and compression is equal to .66*Fy ');
Fbx1,Fbx=t1;
RETURN ;
1b4: PUT LIST('The allowable stress in tension and compression is determined by Section 1.5.1.4.2.');
 t1=Fy*(.733-.0014*bf/(2*tf)*Fy**.5);
 PUT LIST(' Fb = Fy(.733 - 0.0014(bf/2tf)Fy**.5) = ',t1);
 Fbx1,Fbx=t1;
1b3: RETURN ;
pend: appc=1;
 RETURN ;
 END ;
PROCEDURE (Fy,bf,tf,d,ta,fa,dAf,L,rT,Fbx,appc,Cb,Fbxl);
DECLARE test DEC(4), test1 DEC(4), t1 DEC(4), tcb DEC(4);
sfy=sqrt(Fy);
IF Fy=36 THEN t1=22; ELSE t1=.6*Fy;
PUT LIST('The allowable tension stress is .6*Fy = ',t1,' as per Section 1.5.1.4.5.');
tcb=Cb;
Cb=1;

lb5:
PUT LIST(' * * * * for Cb = ',Cb);
t1=L*12/rT;
test=sqrt(102000*Cb/Fy);
IF t1<test THEN GO TO lb7;
test1=sqrt(510000*Cb/Fy);
IF t1>=test1 THEN GO TO lb8;
PUT LIST('L/rT is between (102000*Cb/Fy)**.5 and (510000*Cb/Fy)**.5');
PUT LIST('Therefore the allowable compression stress is the larger of');
t1=(2/3-Fy*(L*12/rT)**2/(1530000*Cb))*Fy;
PUT LIST(' Fb = (2/3-Fy(L/rT)**.5/1530000*Cb)Fy = ',t1);
PUT LIST(' and');
test=12000*Cb/(L*12*dAf);
PUT LIST(' Fb = 12000*Cb/Ld/Af = ',test);
IF Fy=36 THEN test1=22; ELSE test1=Fy*.6;
PUT LIST(' not to exceed Fb = .6*Fy = ',test1);
t1=max(t1,test);
t1=min(t1,test1);
PUT LIST(' USE: Fb = ',t1);
GO TO lb2;

lb8:
PUT LIST('L/rT is greater than (510000*Cb/Fy)**.5');
test1=12000*Cb/(L*12*dAf);
test=170000*Cb/(L*12*Cb/rT)**2;
PUT LIST('Therefore the allowable compression stress is the larger of');
PUT LIST(' Fb = 170000*Cb/(L/rT)**2 = ',test);
PUT LIST(' and');
PUT LIST(' Fb = 12000*Cb/Ld/Af = ',test1);
IF Fy=36 THEN t1=22; ELSE t1=.6*Fy;
PUT LIST(' not to exceed Fb = .6*Fy = ',t1);
test=max(test,test1);
 t1=min(t1,test);
 PUT LIST(' USE: Fb = ',t1);
 GO TO 1b2;
1b7: PUT LIST('L/rT is less than (L/rT is less than (102000.*Cb/Fy)**.5');
 IF Fy=36 THEN t1=22; ELSE t1=.6*Fy;
 PUT LIST(' USE: Fb = ',t1);
1b2: Fbx=t1;
 IF Cb=1 THEN Fbx1=t1;
 IF tcb=1 THEN RETURN ; ELSE Cb=tcb;
 tcb=1;
 GO TO 1b5;
END ;
PROCEDURE (bf, tf, Fy, Fby, appc);
DECLARE t1 DEC(4);
PUT LIST('Find the allowable bending stress weak axis.');
appc=0;
sfy=sqrt(Fy);
IF bf/(2*tf)>52.2/sfy THEN GO TO lb1;
Fby=.75*Fy;
t1=Fby;
PUT LIST('Allowable stress set by Fby = .75*Fy = ', t1);
RETURN;

lb1: IF bf/(2*tf)>95/sfy THEN GO TO pend;
Fby=Fy*(.933-.0035*(bf/(2*tf))*sqrt(Fy));
t1=Fby;
PUT LIST('Allowable stress set by Eq.1.5-5b Fby = ', t1);
RETURN;

pend: appc=1;
RETURN;
END;
PROCEDURE (Mxa, Mxb, Mya, Myb, d, bf, lx, ly, Ls, Lw, Ks, Kw, rx, ry, fa, Fa, Fbx, Fbx1, Fby, Fy, Cmx, Cmy);

DECLARE t1 DEC(4), t2 DEC(4), t3 DEC(4), suml DEC(4);
PUT LIST('Combined stresses');
fbx=Mxb*d/2/Ix; fbx1=Mxa*d/2/Ix; fby=Myb*bf/2/Iy; fby1=Mya*bf/2/Iy;
IF Ls=0 THEN Fex=Cmx; ELSE Fex=Cmx/(1-fa/(149331.188/(Ks*Ls/rx)**2));
IF Lw=0 THEN Fey=Cmy; ELSE Fey=Cmy/(1-fa/(149331.188/(Kw*Lw/ry)**2));
tl=fa/Fa; t2=Fex*fbx1/Fbx1; t3=Fey*fby1/Fby;
PUT LIST('EQ. 1.6-1a');
PUT IMAGE(t1, t2, t3)(im1);
suml=tl+t2+t3;
PUT LIST('EQ. 1.6-1b');
t4=.6*Fy;
IF Fy=36 THEN t4=22;
PUT IMAGE(fa/t4, fbx/Fbx, fby/Fby)(im1);
sum=fa/t4+fbx/Fbx+fby/Fby;
IF suml>sum THEN GO TO lb4;
PUT LIST('EQ. 1.6-1b controls');
t1=fa/t4;
t2=fbx/Fbx;
t3=fby/Fby;
suml=tl+t2+t3;
GO TO lb3;

lb4:
PUT LIST('EQ. 1.6-1a controls');

lb3:
PUT LIST(' '); IF suml>1 THEN PUT LIST('Section is not adequate'); ELSE PUT LIST('Section OK');
PUT LIST(' Sum = ', suml);
t1=t1*100;
t2=t2*100;
t3=t3*100;
PUT LIST('Axial Load accounts for ',t1,' %.');
PUT LIST('Bending X accounts for ',t2,' %.');
PUT LIST('Bending Y accounts for ',t3,' %.');

im1: IMAGE;
 -.-.- + -.-.- + -.-.- ? <= 1.0
RETURN ;
END ;

BIXEQ2: PROCEDURE (Mxa,Mxb,Mya,Myb,d,bf,Ix,Iu,Fa,fa,Fbx,Fby);
DECLARE t1 DEC(4), t2 DEC(4), t3 DEC(4), sum DEC(4);
PUT LIST('Combined stresses.');
 fbx=Mxb*12*d/2/Ix;
 fbx1=Mxa*12*d/2/Ix;
 fby=Myb*12*bf/2/Iy;
 fby1=Mya*12*bf/2/Iy;
PUT LIST('');
PUT LIST('EQ. 1.6-2 Controls');
 t1=fa/Fa;
 t2=fbx1/Fbx;
 t3=fby1/Fby;
PUT IMAGE('for Ma');
PUT IMAGE(t1,t2,t3)(iml);
 sum1=t1+t2+t3;
 t2=fbx/Fbx;
 t3=fby/Fby;
 sum=t1+t2+t3;
PUT LIST('for Mb');
PUT IMAGE(t1,t2,t3)(iml);
IF sum>sum1 THEN PUT LIST('Mb controls'); ELSE PUT LIST('Ma controls');
IF sum>sum1 THEN GO TO lb3;
 t2=fbx1/Fbx;
 t3=fby1/Fby;
 sum=sum1;
PUT LIST('');
IF sum>1 THEN PUT LIST('Section is not adequate'); ELSE PUT LIST('Section OK');
PUT LIST(' Sum = ',sum);
 t1=t1*100;
 t2=t2*100;
 t3=t3*100;
PUT LIST('Axial Load accounts for ',t1,' %.');
PUT LIST('Bending X accounts for ',t2,' %.');
PUT LIST('Bending Y accounts for ',t3,' %.');
IM1: IMAGE;
RETURN ;
END BIXEQ2;

--- + --- + --- ? <= 1.0
Program Name:

PLADSN

Purpose:

Program PLADSN reviews for the user the philosophy of plastic design of bending members. It will also interact with the user in the plastic design of beam-columns.

Limitations:

Only W sections subjected to bending about the strong axis and column loads may be designed using PLADSN.

Prerequisite:

Read Part 2 of the AISC Specification.

Data Required Before Execution:

A beam-column design problem. The length between support in the strong and weak direction.
Overall Flow Chart PLADSN

START

Print an explanation of the philosophy behind plastic design; define plastic hinge and collapse mechanism.

Give an introduction to the interaction equations 2.4-2 and 2.4-3.

Print the parameters required during the execution of PLADSN.

Present a preprogrammed investigation of a beam-column.

New problem? yes no

Do you know the member? no yes

no

STOP

yes

Print a table of required area and plastic section modulus for 20, 50, and 80% bending.

Interact with the student in the investigation of the member.
Detailed Flow Chart PLADSN

START

Do you want to review the basics of plastic design?

yes

CALL PLATT1
CALL PLATT2

no

CALL PLADS1

END
Present an explanation of the philosophical difference between elastic design and plastic design as applied to bending members.

Define plastic hinge and plastic mechanism.

Give an overview of the provisions of the AISC Specification in regard to plastic design.

RETURN
External Procedure PLATT2

Give an introduction to the interaction equations 2.4-2 and 2.4-3.

Define the parameters required during the execution of PLADSN.

RETURN
External Procedure PLADSl

Interact with the student in the investigation of a preprogrammed beam-column problem.

Assign values to the input parameters.

Go to skip

Do you know the member?

Check paragraph 2.7 and 2.7 for local buckling and lateral bracing criteria.
Calculate the allowable compression stress (Fa) from equation 1.5-1.

Check the adequacy of the member by equation 2.5-2 and 2.5-3.

New problem? yes Go to again

no RETURN
Internal Procedure pltl

Print a table of required areas and plastic section modulus for 20, 50, and 80% bending.

RETURN
/* PROGRAM PLADSN */
DECLARE PLATT1 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE PLATT2 ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE PLADS1 ENTRY EXT KEY(whmIII) LIB(USER2);
PUT LIST('Would you like to review the basics of plastic design? (1 = yes
0 = no)');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO lb1;
CALL PLATT1;
CALL PLATT2;
lb1:
CALL PLADS1;
PUT LIST('This concludes PLADSN.');
END ;
PLATT1: PROCEDURE;
PUT LIST('');
PUT LIST('Program PLADSN will review with you plastic design of beams and beam-columns');
PUT LIST('Before proceeding the user should first read Part 2 of the AISC Specifications');
PUT LIST('');
PUT LIST('Plastic design has a different philosophy than elastic design. To explain');
PUT LIST('this difference we will consider bending. If no local buckling occur a bending');
PUT LIST('member will resist no additional bending moment when the total cross section has');
PUT LIST('reached the plastic or yield stress. The bending moment at this time is known');
PUT LIST('as the plastic moment; and the point in the beam at which it forms is known as');
PUT LIST('a plastic hinge. If the load is increased beyond this point a new plastic hinge');
PUT LIST('will form at another point of high bending moment. This process continues until');
PUT LIST('enough plastic hinges form to cause instability of the structure. This instability');
PUT LIST('is called a collapse mechanism. The load at which this occurs is reduced by');
PUT LIST('a factor of safety in plastic design to obtain the working load of the structure.');
PUT LIST('Note that for each plastic hinge to form no local or torsional buckling may occur.');
PUT LIST('');
PUT LIST('In elastic design we apply a factor of safety to the yield stress and call this the');
PUT LIST('allowable stress. The design of the structure is accomplished by keeping the stresses');
below this allowable. This allowable stress is further reduced to account';

PUT LIST('for local or torsional buckling.');

PUT LIST('From the above the difference between the elastic and plastic design can be seen to be');

PUT LIST('one of physiological intent. In elastic design the designer intends that the stresses');

PUT LIST('everywhere be below some set limit. In plastic design the designer assures that no');

PUT LIST('local or lateral torsional buckling can occur and then designs based on the load that');

PUT LIST('will cause collapse of the structure or collapse mechanism.');

PUT LIST('To further emphasize the fact that in plastic design of beam the designer has only to');

PUT LIST(' insure that no local or lateral torsional buckling will occur, look at Section 2.7 and 2.9');

PUT LIST('of the AISC Specifications. Section 2.7 specifies the limit on \[\frac{bf}{2*tf} \] and \[\frac{d}{tw} \] thus');

PUT LIST('controlling local buckling of the flanges and web. Section 2.9 limits the length between');

PUT LIST('bracing thus controlling the lateral torsional buckling. With these provisions satisfied');

PUT LIST('the maximum moment the member can resist is the plastic moment.');

PUT LIST('Since plastic design for bending consists of a simple check of local and lateral torsional');

PUT LIST('buckling requirements let us now proceed to review plastic design of beam-columns.');

RETURN

END PLATT1;
PLATT2: PROCEDURE ;
PUT LIST('');
PUT LIST('Plastic design of beam-columns is basically the same as it is in ');
PUT LIST(' elastic design.');)
PUT LIST(' That is, the design is satisfactory if an interaction equation is '
PUT LIST(' satisfied.');)
PUT LIST(' There are two interaction equations which apply, Equation 2.4-2 '
PUT LIST(' and 2.4-3. ');)
PUT LIST(' These account for instability and load limitations respectively. '
PUT LIST(' They are ');)
PUT LIST(' similar to those in elastic design except that they are in terms '
PUT LIST(' of factored ');)
PUT LIST(' load instead of stress.');)
PUT LIST(' Note that no accounting has been made for bending about the weak axis. '
PUT LIST(' This is ');)
PUT LIST(' because simple plastic theory i.e. the use of plastic bending '
PUT LIST(' moment is not ');)
PUT LIST(' adequate for biaxial bending.');)
PUT LIST(')
PUT LIST(' The following parameters will be used during the execution of PLADSN: '
PUT LIST(')
PUT LIST(' Fy - yield stress (ksi).');)
PUT LIST(' Fa - allowable compressive stress defined by Eq. 1.5-1 (ksi).');)
PUT LIST(' Cm - a coefficient defined in Section 1.6.1');)
PUT LIST('Mp - Plastic moment (ft*K).');)
PUT LIST(' M - applied factored bending moment (ft*K).');)
PUT LIST(' (for calculation of factored load see Section 2.1)');)
PUT LIST(' PLADSN assumes bending about the strong axis.');)
PUT LIST(' P - applied factored axial load (Kips).');)
PUT LIST(' (for calculation of factored load see Section 2.1)');)
PUT LIST(' K - effective length factor - input as 1.0 if Column is from a one '
PUT LIST(' or two story ');)
PUT LIST(' unbraced planar frame - Ref. Table C 2.4.1. ');)
PUT LIST(' AREA- cross section area (in**2).');)
PUT LIST(' rx - radius of gyration about the strong axis (in).');
PUT LIST(' ry - radius of gyration about the weak axis (in).');
PUT LIST(' Lx - length between bracing in the strong direction (ft).');
PUT LIST(' Ly - length between bracing in the weak direction (ft).');
PUT LIST(' Z - plastic section modulus (in**3).');
PUT LIST(' E - modulus of elasticity of steel (29,000ksi).');
PUT LIST(' ANSWER - usually requiring a yes or no indication 1 = yes 0 = no.');
PUT LIST(' IDENTIFICATION - anything may be typed for the future identification of the problem.');
PUT LIST(' ');
PUT LIST('During the execution of PLADSN if any value of input is to remain the same');
PUT LIST(' as that in the previous problem the value may be retyped or the RETURN key');
PUT LIST(' may be struck.');
PUT LIST(' ');
PUT LIST('The logic flow of beam-column design or Paragraph 2.4 is best explained by');
PUT LIST(' working an investigation problem.');
PUT LIST(' ');
RETURN ;
END PLATT2;
PLADS1: PROCEDURE;
DECLARE t1 DEC(6), t2 DEC(6), t3 DEC(6), t5 DEC(6);
DECLARE ttt CHAR(1);
DECLARE P DEC(6), M DEC(6), Lx DEC(6), Ly DEC(6);
DECLARE K DEC(6), rx DEC(6), ry DEC(6), Z DEC(6);
DECLARE Fy DEC(6), AREA DEC(6), Cm DEC(6), Fa DEC(6);
DECLARE Fe DEC(6), Pe DEC(6), Pcr DEC(6);
DECLARE Cc DEC(6), Mm DEC(6), sum DEC(6), sum1 DEC(6);
PUT LIST(' ** ** ** IDENTIFICATION ** ** **');
PUT LIST(' Investigation of a W14X184 P-255 M=850 unbraced in the weak direction');

P=255;
M=850;
Lx=14;
Ly=14;
K=1;
rx=6.49;
ry=4.04;
Z=338;
Fy=36;
AREA=54.1;
Cm=1;
GO TO skip;
AGAIN: PUT LIST(' ** ** ** IDENTIFICATION ** ** **');
GET EDIT(ttt)(A(1));
GET LIST(P,M,Fy,Lx,Ly);
PUT LIST('Do you know the first trial member?');
GET LIST(ANSWER);
IF ANSWER=0 THEN CALL ptr1;
GET LIST(ry,rx,Z,AREA,Cm,K);
PUT LIST('Check width thickness ratio Section 2.7.');
PUT LIST(' is the bf/2tf provision satisfied');
PUT LIST(' and is');
IF P/(Fy*AREA)>.27 THEN t1=257/sqrt(Fy); ELSE t1-412/sqrt(Fy)*(1-1.4*P/(Fy*AREA));
t2=P/(Fy*AREA);
PUT LIST(' d/t < ',t1,' based on P/Py = ',t2);
PUT LIST('Bracing requirements Section 2.9.');
t1=(1375/Fy+25)*ry/12;
t2=1375/Fy*ry/12;
PUT LIST(' length between bracing shall be closer than');
PUT LIST(' ',t1,' ft for +1 > M/Mp > -0.5');
PUT LIST(' ',t2,' ft for -0.5 >=M/Mp > -1.');
PUT LIST('Are these provisions satisfied?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO skip;
PUT LIST('Choose a new member.');
GO TO agin;
skip:
CALL print;
Cc=sqrt(2*9.86959*29000/Fy);
PUT LIST('Cc = (2*(pi)**2*E/Fy)**.5 = ',Cc);
t1=K*Lx*l2/rx;
t2=Ly*l2/ry;
PUT LIST('Slenderness ratio strong = ',t1,' weak = ',t2);
IF t1>Cc THEN GO TO lb1;
PUT LIST('Slenderness ratio strong axis greater than Cc try a new member.');
GO TO agin;
lb1:
PUT LIST('Slenderness ratio strong is less than or equal to Cc. OK');
IF t1>t2 THEN GO TO lb2;
PUT LIST('Weak axis controls the value of Fa');
GO TO lb3;
lb2:
PUT LIST('Weak axis controls the value of Fa.');
lb3:
t1=max(t1,t2);
t2=t1**2;
t3=t2*t1;
c2=Cc**2;
c3=Cc**3;
Fa=(1-t2/(2*c2))*Fy/5/3+3*t1/(8*Cc)-53/(8*c3));
PUT LIST('Fa = ',Fa,' by Eq. 1.5-1');
Pcr=1.7*AREA*Fa;
PUT LIST('Pcr = 1.7*AREA*Fa = ',Pcr);
PUT LIST(' ');
t1=K*Lx*12/rx;
Fe=12*9.86959*29000/(23*t1**2);
Pe=23/12*AREA*Fe;
PUT LIST('F''e = 12*(pi)**2*E/(23*(KL/r)**2) = ',Fe);
PUT LIST('Pe = (23/12)*AREA*F''e = ',Pe);
PUT LIST('Is the column braced in the weak direction?');
GET LIST(ANSWER);
IF ANSWER=O THEN GO TO 1b4;
Mm=Fy*Z/12;
PUT LIST('Mm = Mp = FY*Z = ',Mm, ' ft*kips');
GO TO 1b5;
1b4:
 Mm=(1.07-Ly*12/ry*sqrt(Fy)/3160)*Fy*Z/12;
 IF Mm Fy*Z/12 THEN Mm=Fy*Z/12;
 PUT LIST('Mm = (1.07 - ((Ly/ry)*Fy**.5)/3160)*Mp/12 <= Mp = ',Mm, ' ft*kips');
1b5:
 PUT LIST(' ');
 PUT LIST('Interaction Equation 2.4-2');
 t1=P/Pcr;
 t2=Cm*M/((1-P/Pe)*Mm);
 PUT IMAGE(t1,t2)(im1);
im1: IMAGE;
 --.--- + --.--- <= ? 1.0
 PUT LIST('Interaction Equation 2.4-3');
 sum=Fy*AREA;
 sum1=Fy*Z/12;
 PUT LIST(' Py = Fy*AREA = ',sum);
 PUT LIST(' Mp = Fy*Z/12 = ',sum1);
 t3=P/(Fy*AREA);
 t4=M/(1.18*Fy*Z/12);
 PUT IMAGE(t3,t4)(im1);
 sum=t1+t2;
 sum1=t3+t4;
IF sum>suml THEN GO TO lb6;
PUT LIST('Eq. 2.4-3 controls');
t1=t3;
t2=t4;
GO TO lb7;
lb6: PUT LIST('Eq 2.4-2 controls');
 ssum=max(sum,suml);
 PUT LIST('sum = ',sum);
 t1=t1*100;
 t2=t2*100;
PUT LIST('Axial load accounts for ',t1,'%');
PUT LIST('Bending accounts for ',t2,'%');
PUT LIST('Do you want to try another problem?');
GET LIST(ANSWER);
IF ANSWER=1 THEN GO TO again;
PUT LIST('');
RETURN;

print: PROCEDURE;
PUT LIST('');
PUT LIST('');
PUT LIST('');
PUT LIST('Fy = ',Fy);
PUT LIST('M = ',M, ' P = ',P);
PUT LIST('Lx = ',Lx, ' Ly = ',Ly);
PUT LIST('rx = ',rx,' ry = ',ry);
PUT LIST('AREA = ',AREA, ' Z = ',Z);
PUT LIST('Cm = ',Cm, ' K = ',K);
PUT LIST('**********************************');
PUT LIST('');
RETURN;
END print;

pltrl: PROCEDURE;
PUT LIST(' ');
PUT LIST(' ');
PUT IMAGE(1)(im6);
PUT IMAGE(1)(im7);

lop1: DO i=2 TO 8 BY 3;
j=i/10;
jj=i*10;
t1=P/((1-j)*Fy);
t2=M*12/(j*Fy);
PUT IMAGE(jj,t1,t2)(im8);
END lop1;

im6: IMAGE;
Percent of Member Area Z Plastic Section Modulus

im7: IMAGE;
Resisting Bending (in**2) (in**3)

im8: IMAGE;

--.-% ---.- ----.-

PUT LIST('Based on the above table choose a W member.');
RETURN ;
END pltr1;
END PLADS1;
Program Name:

RIGID

Purpose:

Program RIGID can be used to analyze beams, plane frames and trusses. The members in the structure can be arranged in any general geometric pattern.

Limitations:

The structure may consist of a maximum of nine joints and eighteen members. The analysis is an elastic analysis. Loads and supports must be in the plane of the structure. No internal hinges are allowed.

Prerequisite:

Knowledge of indeterminate structural analysis.

Data Required Before Execution:

The joints of the structure should be numbered and the members named. A cross section area and moment of inertia (zero if a truss) for each member must be defined. The x and y dimension of each member should be calculated before execution of RIGID.
Overall Flow Chart RIGID

START

Print an explanation of how to use RIGID.

start

Input E

Input the member properties.

1b8

Print the member properties.

ON ATTN TEST

Changes to member properties?

yes → Input changes.

no →

yes

no
ON ATTN TEST

Initially load arrays are zero.

Changes to member loads?

yes

Input member loads.

no

Changes to joint loads?

yes

Input joint loads.

no

Initially no supports are specified.

Changes to specified support deflections?

yes

Input supports.

no

Print:
joint deflections
support reactions
member end loads.

Modify this structure or apply new loads?

yes

Go to 1b8

no

New structure?

yes

Go to start

no

STOP
Detailed Flow Chart RIGID

START

CALL RIGTIT

start

Input E Zero arrays.

Input the member properties:
mem - member name
jts - starting joint
jte - ending joint
H - x coordinate
V - y coordinate
XI - moment of inertia
area- cross-section area.

1lb8

Print the member properties.

Calculate the overall total number of degrees of freedom (ndf) and the overall band width (iband).

ON ATTN TEST

Changes to member properties? yes Input changes.

no
Calculate the detailed band width (iband) and the number of degrees of freedom (ndf).

Zero external file (matt2).

CALL MATRIX(asal,H,V,E,area,XI,NM,dum,jts,jte)

Zero load, deflection and fixed end condition arrays.

Initially load arrays are zero.

Changes to member loads?

yes

Input member loads and calculate fixed end condition arrays (pmold and Fo), via CALL UNILD(pmold,Dir, W,Fo,jts,jte,H,V,I,pos1,pos) or CALL CONTLD(pmold,Dir,w,pos,jts, jte,H,V,I,Fo)

no

Changes to joint loads?

yes

Input joint loads and add to the fixed end condition array (pjold).

no

Changes to specified support deflections?

yes

Input the specified support deflections and count the number (nospc). Save their position in ispc.

no
\[X = x_{old} \]
\[p = p_{jold} \text{ (joint loads)} + p_{mold} \text{ (member loads)} \]

CALL REDUCE\((X,p,ispnc,ndf,iband,nospc) \)
CALL BAKSUB\((X,p,ispnc,ndf,iband,nospc) \)
CALL PRTREX\((p,ispnc,nospc,X,ndf) \)
CALL FORCE\((NM,E,X,H,V,XI,jts,jte,mem,Fo,area) \)

New structure - Go to start
Modify this structure or new loads - Go to lb8

STOP
External Procedure RIGTIT

Skip the program description?

yes

RETURN

no

Print an explanation of the use of RIGID.

RETURN

External Procedure MATRIX(asa,h,v,e,
area,xi,NM,dum,jts,jte)

Develope the total structural stiffness matrix for a bending element with axial deformation included.

Place these element matrices in their proper position in the total structural stiffness matrix residing externally in file matt2.

Calculations complete for all members?

no

yes

RETURN
External Procedure UNILD(p,dir,w,fo,jts,jte,h,v,i,pos1,pos)

Uniform loads.

Calculate from basic handbook equations the fixed end moments \(\text{fo} \) and the fixed end moments and reactions \(\text{p} \).

RETURN

External Procedure CONTLD(p,dir,w,pcs,jts,jte,h,v,i,fo)

Concentrated loads.

Calculate from basic handbook equations the fixed end moments \(\text{fo} \) and the fixed end moments and reactions \(\text{p} \).

RETURN
External Procedure REDUCE(delta,p,ispc,isize,iband,nospc)

Begin with first row.

Is this row one with a specified deflection? yes

lbl

no

Reduce the respective column below the diagonal to zero.

Have the calculations been done for all rows? no

yes

RETURN

Change the values of p to account for non zero deflections at supports.
External Procedure BAKSUB(delta, p, ispc, isize, iband, nospc)

Begin with last row.

Is this row one with a specified deflection?

yes

lbl

no

Back substitute this row to calculate the respective deflection.

Have these calculations been done for all rows?

no

yes

Back substitute this row to calculate the respective reaction.

RETURN
External Procedure PRTREX(p,ispc,nospc,x,ndf)
Print the joint deflections and reactions, with titles.
RETURN

External Procedure FORCE(nm,E,X,H,V,XI,jts,jte,mem,Fo,AREA)
Using the slope deflection equations and the equation for axial deformation calculate the end load for each member.
Adjust the end moments.

Truss member ?
X1 = 0

yes
Print axial force in the member.

no
Print the axial force and the moment at the end of the member.
RETURN
/* PROGRAM RIGID */
DECLARE matt2 FILE ENV(REGIONAL (1) F(216))
DECLARE type CHAR (1);
DECLARE ispc(10) DEC(6);
DECLARE dum(27), asa1(6,6);
DECLARE E DEC(6), H(18) DEC(6), V(18) DEC(6), XI(18) DEC(6);
DECLARE jts(18) DEC(6), jte(18) DEC(6), mem(18) CHAR(3), Fo(18,2) DEC(6);
DECLARE CONTLD ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE UNILD ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE X(27), p(27), area(18) DEC(6);
DECLARE xold(27) DEC(6), pmold(27) DEC(6), pjold(27) DEC(6);
DECLARE Dir CHAR(1);
DECLARE PRTREX ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE MATRIX ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE REDUCE ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE BAKSUB ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE FORCE ENTRY EXT KEY(whmIII) LIB(USER2);
DECLARE RIGTIT ENTRY EXT KEY(whmIII) LIB(USER2);
CALL RIGTIT;
PUT LIST(' ');
PUT LIST(' ');
start:
PUT IMAGE(1)(im4);
PUT IMAGE(1)(im5);
ON ERROR MSG GO TO start;
GET EDIT(E)(X(1),F(8));
PUT IMAGE(1)(im1);
PUT IMAGE(1)(im2);
PUT IMAGE(1)(im3);
E=E*144;
XI=0;
area=0;
xold=0;
pmold=0;
pjold=0;
ON ATTENTION GO TO lb8;
i=1;
err1: \[i = i - 1; \]
loop1: \[i = i + 1; \]

ON ERROR MSG GO TO err1;
NM = i - 1;

PUT LIST('Member',i);
GET EDIT(mem(i),jts(i),jte(i),H(i),V(i),area(i),XI(i))(X(1),A(3),X(3),F(3),X(4),
F(3),X(3),(4)*F(11));
area(i) = area(i)/144;
XI(i) = XI(i)/12**4;
GO TO loop1;

lb8: \[\text{Dir='';} \]
ON ERROR SYSTEM;
PUT EDIT(Dir)(SKP(10),A(1));
PUT IMAGE(1)(im1);
PUT IMAGE(1)(im2);
iband,ndf=0;
k=12**4;
i=144;

loop4: DO i=1 TO NM;
PUT LIST('Member',i);
PUT IMAGE(mem(i),jts(i),jte(i),H(i),V(i),area(i)*1,XI(h)*k)(im15);
/* Calculate the number of degrees of freedom ndf and iband */;
im15: \[\text{IMAGE;} \]
\[\text{---- --- ----- ----- --- -----} \]
ndf=MAX(ndf,jts(i),jte(i));
dif=ABS(jts(i)-jte(i));
iband=MAX(dif,iband);
END loop4;
PUT LIST('');
PUT LIST('Changes to Member Properties');
ON ATTENTION GO TO lb9;
PUT IMAGE(1)(im1);
PUT IMAGE(1)(im2);
PUT IMAGE(1)(im3);
ON ERROR MSG GO TO lb10;
lbl10: GET LIST(Member);
 IF Member>NM THEN NM=Member;
 i=Member;
 GET EDIT(mem(i),jts(i),jte(i),H(i),V(i),area(i),XI(i))(X(1),A(3),X(3),F(3),
 X(4),F(3),X(3),(4) F(11));
 area(i)=area(i)/144;
 XI(i)=XI(i)/12**4;
 ON ATTENTION GO TO lb8;
 GO TO lb10;

lbl9: iband=(iband+1)*3;
 ON ERROR SYSTEM;
 ndf=ndf*3;
 /* Zero file matt2 */;
 dum=0;
 OPEN FILE(matt2) SEQUENTIAL OUTPUT;

loop2: DO i=1 TO 27;
 WRITE FILE(matt2) FROM(dum);
 END loop2;
 CLOSE FILE(matt2);
 CALL MATRIX(asa1,H,V,E,area,XI,NM,dum,jts,jte);
 p=0;
 X=0;
 Fo=0;
 ON ATTENTION GO TO lb7;
 PUT LIST('Member Loads');
 PUT IMAGE(1)(im12);
 PUT IMAGE(1)(im13);
 PUT IMAGE(1)(im14);
 i=1;

err2: i=i-1;

lbl5: i=i+1;
 ON ERROR MSG GO TO err2;
 PUT LIST('Load ',i);
 GET EDIT(I,type,Dir,W,pos,pos1)(X(1),F(2),X(6),A(1),X(9),A(1),X(6),(3) F(12));
IF type='c' THEN type='C';
IF Dir='y' THEN Dir='Y';
IF Dir='x' THEN Dir='X';
pos=abs(pos);
pos1=abs(pos1);
IF I>O THEN GO TO 1b12;
pmold=0;
Fo=0;
GO TO 1b7;
1b12:
IF i=1 THEN pmold=0;
IF i=1 THEN Fo=0;
IF type='C' THEN GO TO 1b6;
CALL UNILD(pmold,Dir,W,Fo,jts,jte,H,V,I,pos1,pos);
GO TO 1b5;
1b6:
CALL CONTLD(pmold,Dir,W,pos,jts,jte,H,V,I,Fo);
GO TO 1b5;
1b7:
ON ATTENTION GO TO 1b2;
PUT LIST('Joint Loads');
PUT IMAGE(1)(im6);
PUT IMAGE(1)(im7);
PUT IMAGE(1)(im8);
ON ATTENTION GO TO 1b2;
i=1;
err3:
i=i-1;
1b1:
i=i+1;
ON ERROR MSG GO TO err3;
PUT LIST('Load ',i);
GET EDIT(I,Dir,W)(X(1),F(3),X(7),A(1),X(7),F(7));
IF I>O THEN GO TO 1b13;
pjold=0;
GO TO 1b2;
1b13:
IF i=1 THEN pjold=0;
IF Dir='X=' THEN I=I*3-1;
IF Dir='x' THEN I=I*3-1;
IF Dir='Y' THEN I=I*3;
IF Dir='y' THEN I=I*3;
IF Dir='R' THEN I=I*3-2;
IF Dir='r' THEN I=I*3-2;
pjold(I)=pjold(I)+W;
GO TO lb1;

1b2: /* Specified Deflections */
ON ATTENTION GO TO 1b4;
PUT LIST('Specified Deflections');
PUT IMAGE(1)(im9);
PUT IMAGE(1)(im10);
PUT IMAGE(1)(im11);
ON ATTENTION GO TO 1b4;

err4: i=i-1;
i=i+1;
1b3: ON ERROR MSG GO TO err4;
PUT LIST('Spec. Def. ',i);
GET EDIT(I,Dir,W)(X(1),F(3),X(7),A(1),X(7),F(7));
IF i=1 THEN xold=0;
IF i=1 THEN nospc=0;
nospc=nospc+1;
IF Dir='X' THEN I=I*3-1;
IF Dir='x' THEN I=I*3-1;
IF Dir='Y' THEN I=I*3;
IF Dir='y' THEN I=I*3;
IF Dir='R' THEN I=I*3-2;
IF Dir='r' THEN I=I*3-2;
IF Dir='X' THEN W=W/12;
IF Dir='x' THEN W=W/12;
IF Dir='Y' THEN W=W/12;
IF Dir='y' THEN W=W/12;
xold(I)=xold(I)+W;
ispc(nospc)=I;
GO TO 1b3;

1b4: ON ATTENTION SYSTEM;
ON ERROR SYSTEM;
X=xold;
p=pjold+pmold;
CALL REDUCE(X,p,ispc,ndf,iband,nospc);
CALL BAKSUB(X,p,ispc,ndf,iband,nospc);
CALL PRTREX(p,ispc,nospc,X,ndf);
CALL FORCE(NM,E,X,H,XI,jts,jte,mem,Fo,area);
PUT LIST('New structure = 1 Modify this Structure or new loads = 2 STOP
 = O');
GET LIST(ANSWER);
IF ANSWER=0 THEN GO TO enn;
IF ANSWER=1 THEN GO TO start; ELSE GO TO lb8;
enn: PUT LIST('Execution Complete');
END ;
im1: IMAGE;
 Mem. Start End. X coord Y coord Area I
im2: IMAGE;
 Name Joint Joint (ft.) (ft.) (in**2) (in**4)
im3: IMAGE;
 [***] [***] [***] [*****] [******] [*******] [*****]
im4: IMAGE:
 Modulus of Elasticity E(ksi)
im5: IMAGE;
 [******]
im6: IMAGE;
 Joint Direction Joint Load
im7: IMAGE;
 No. (X,Y or R) (K or K*ft)
im8: IMAGE;
 [***] [***] [*****]
im9: IMAGE;
 Joint Direction Spec. Def.
im10: IMAGE;
 No. (X,Y or R) (in or rad)
im11: IMAGE;
 [***] [***] [*****]
im12: IMAGE;
<table>
<thead>
<tr>
<th>Mem. Type</th>
<th>Direction</th>
<th>Magnitude</th>
<th>Perpendicular distance from start. (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGE; No.</td>
<td>(U or C)</td>
<td>(X or Y)</td>
<td>(K or K/ft)</td>
</tr>
<tr>
<td></td>
<td>Start</td>
<td>End of load. (ft)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>im13</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>im14</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGE;</td>
<td>(U or C)</td>
<td>(X or Y)</td>
<td>(K or K/ft)</td>
</tr>
<tr>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>
PROCEDURE:
ON ATTENTION GO TO enn;
PUT LIST('To skip the printing of the program description depress the ATTN key.');
PUT LIST('');
PUT LIST('Problem Description: Before input to RIGID can begin the user must number the');
PUT LIST('joints of the structure and give up to a three character alphanumeric name to');
PUT LIST('each member. A member connects two joints and a joint must be specified');
PUT LIST('at supports, points between members and changes in section.');
PUT LIST('');
PUT LIST('Sign Convention: The sign convention used by RIGID is the standard X-Y system,');
PUT LIST('+Y is up +X is to the right. This convention is applicable when defining the');
PUT LIST('member lengths and loads. For member lengths, the coordinates are set at the');
PUT LIST('starting joint. For loads, the direction defines the sign. Positive rotation');
PUT LIST('and moment is clockwise.');
PUT LIST('');
PUT LIST('Rules for Input:');
PUT LIST('1. Values of input must be typed in the columns indicated by asterisks. The');
PUT LIST('only exception to this is in the Changes to Member Properties. In this');
PUT LIST('section the member number, as defined by the computer, is requested by');
PUT LIST('Member. The user types the member number then the RETURN key and then the');
PUT LIST('new member properties in the respective columns defined by asterisks.');
2. After one line has been typed the balance of the line must be spaced out.
 past the last asterisk, and the RETURN key struck. If the line is acceptable,
 the terminal will respond with a request for the next line of input. If an error occurs, and error message will be printed and a request for a repeat;
 of correct information will follow. If neither of the above occurs not enough;
 spaces followed the last item of input. To correct this, space several times;
 and then strike the RETURN key.';
 3. The ATTN key causes the computer to pass to the next area of input. It is used;
 after all items of input in an area have been accepted by the computer.';
 4. If the user elects to modify the structure or loads the ATTN key struck when the';
 first line of input is requested will leave that area of data unchanged.';
 5. A line of blank spaces as the first line of input causes that area of input to';
 be set to zero, i.e. all member loads are zero etc. If one item of an area is to';
 change the whole area must be retyped. On the first pass all load data is zero.');
MATRIX:
PROCEDURE (asa,h,v,e,area,xi,NM,dum,jts,jte);

DECLARE matt2 FILE ENV(REGIONAL(1) F(216));
OPEN FILE(matt2) DIRECT UPDATE;

c=1;
loop3:
DO il=1 TO NM;
x1=sqrt(h(il)**2+v(il)**2);
sinl=v(il)/x1;
cosl=h(il)/x1;
ea=area(il)*e/x1;
ei1=e*xi(il)/x1;
ei2=3i1/x1;
ei3=ei2/x1;
asa(1,1)=4*ei1;
asa(1,2)=6*ei2*sin1*c;
asa(1,3)=-6*ei2*cos1*c;
asa(1,4)=asa(1,1)/2;
asa(1,5)=-asa(1,2);
asa(1,6)=-asa(1,3);
asa(2,1)=asa(1,2);
asa(2,2)=ea*cos1**2+12*ei3*sin1**2;
asa(2,3)=ea*sin1*cos1-12*ei3*sin1*cos1;
asa(2,4)=asa(1,2);
asa(2,5)=-asa(2,2);
asa(2,6)=-asa(2,3);
asa(3,1)=asa(1,3);
asa(3,2)=asa(2,3);
asa(3,3)=ea*sin1**2+12*ei3*cos1**2;
asa(3,4)=asa(1,3);
asa(3,5)=-asa(2,3);
asa(3,6)=-asa(3,3);
asa(4,1)=asa(1,4);
asa(4,2)=asa(2,4);
asa(4,3)=asa(3,4);
asa(4,4)=asa(1,1);
asa(4,5) = -asa(1,2);
asa(4,6) = -asa(1,3);
asa(5,1) = asa(1,5);
asa(5,2) = asa(2,5);
asa(5,3) = asa(3,5);
asa(5,4) = asa(4,5);
asa(5,5) = asa(2,2);
asa(5,6) = asa(4,5);
asa(6,1) = asa(1,6);
asa(6,2) = asa(2,6);
asa(6,3) = asa(3,6);
asa(6,4) = asa(4,6);
asa(6,5) = asa(5,6);
asa(6,6) = asa(3,3);

ii = (jts(i1) - 1) * 3 + 1;
jj = (jte(i1) - 1) * 3 + 1;
l = 0;

lop1: DO k = 1 TO 2;
 IF k = 1 THEN iii = ii; ELSE iii = jj;
lop2: DO i = iii TO iii + 2;
 1 = 1 + 1;
 READ FILE(matt2) INTO(dum) KEY(i);
 jjj = 0;
 DO j = ii TO ii + 2;
 jjj = jjj + 1;
 dum(j) = dum(j) + asa(1, jjj);
 END lop3;
lop3: DO j = ii TO ii + 2;
 jjj = jjj + 1;
 dum(j) = dum(j) + asa(1, jjj);
 END lop4;
lop4: DO j = jj TO jj + 2;
 jjj = jjj + 1;
 dum(j) = dum(j) + asa(1, jjj);
 REWRITE FILE(matt2) FROM(dum) KEY(i);
 END lop2;
 END lop1;
 END loop3;
CLOSE FILE(matt2) ;
RETURN ;
END MATRIX;
PROCEDURE (p,dir,w,fo,jts,jte,h,v,i,pos1,pos);
ii=jts(i)*3-2;
jj=jte(i)*3-2;
b=pos1-pos;
IF dir='X' THEN GO TO stmt1;
sign=h(i)/abs(h(i));
h1=abs(h(i));
h2=h1-pos1;
const=b/(24*h1**2);
const=const*(b**2*(h1+3*(h2-pos))-24*(h2+b/2)**2*(pos+b/2));
const=abs(const);
p(ii)=p(ii)-w*const*sign;
fo(i,1)=fo(i,1)+w*const*sign;
const=b/(24*h1**2);
const=const*(b**2*(h1+3*(pos-h2))-24*(pos+b/2)**2*(h2+b/2));
const=abs(const);
p(jj)=p(jj)+w*const*sign;
fo(i,2)=fo(i,2)-w*const*sign;
const=b/(4*h1**3);
const=const*(4*(h2+b/2)**2*(h1+2*(pos+b/2))-b**2*(h2-pos));
const=abs(const);
p(ii+2)=p(ii+2)+w*const;
const=b/(4*h1**3);
const=const*(4*(pos+b/2)**2*(h1+2*(h2+b/2))-b**w*(pos-h2));
const=abs(const);
p(jj+2)=p(jj+2)+w*const;
RETURN;
/* Horizontal uniform load */;
stmt1:
sign=v(i)/abs(v(i));
h1=abs(v(i));
h2=h1-pos1;
const=b/(24*h1**2);
const=const*(b**2*(h1+3*(h2-pos))-24*(h2+b/2)**2*(pos+b/2));
const=abs(const);
p(ii)=p(ii)+w*const*sign;
fo(i,1)=fo(i,1)-w*const*sign;
const=b/(24*h1**2);
const=const*(b**2*(h1+3*(pos-h2))-24*(pos+b/2)**2*(h2+b/2));
const=abs(const);
p(jj)=p(jj)-w*const*sign;
fo(i,2)=fo(i,2)+const*sign;
const=b/(4*h1**3);
const=const*(4*(h2+b/2)**2*(h1+2*(pos+b/2))-b**2*(h2-pos));
const=abs(const);
p(ii+1)=p(ii+1)+w*const;
const=b/(4*h1**3);
const=const*(4*(pos+b/2)**2*(h1+2*(h2+b/2))-b**2*(pos-h2));
const=abs(const);
p(jj+1)=p(jj+1)+w*const;
RETURN ;
END UNILD;
PROCEDURE (p,dir,w,pos,jts,jte,h,v,i,fo);

ii=jts(i)*3-2;
jj=jte(i)*3-2;
IF dir='X' THEN GO TO stmt1;
sign=h(i)/abs(h(i));
h1=abs(h(i));
h2=h1**2;
h3=h1**3;
b=h1-pos;
p(ii)=p(ii)-w*pos*b*b/h2*sign;
p(jj)=p(jj)+w*pos*pos*b/h2*sign;
p(ii+2)=p(ii+2)+w*b**2*(h1+2*pos)/h3;
p(jj+2)=p(jj+2)+w*pos**2*(h1+2*b)/h3;
fo(i,1)=fo(i,1)-w*pos*b*b/h2*sign;
fo(i,2)=fo(i,2)+w*pos*pos*b/h2*sign;
RETURN;

!* horizontal concentrated loads */;

stmt1:
sign=v(i)/abs(v(i));
h1=abs(v(i));
h2=h1**2;
h3=h1**3;
b=h1-pos;
p(ii)=p(ii)+w*pos*b*b/h2*sign;
p(jj)=p(jj)-w*pos*pos*b/h2*sign;
p(ii+1)=p(ii+1)+w*b**2*(h1+2*pos)/h3;
p(jj+1)=p(jj+1)+w*pos**2*(h1+2*b)/h3;
fo(i,1)=fo(i,1)-w*pos*b*b/h2*sign;
fo(i,2)=fo(i,2)+w*pos*pos*b/h2*sign;
RETURN;
END ;
REDUCE: PROCEDURE (delta,p,ispc,isize,iband,nospc);
DECLARE matt2 FILE ENV(REGIONAL(1) F(216)) ;
DECLARE k(27), kn(27) ;
OPEN FILE(matt2) DIRECT UPDATE ;

loop4: DO i=1 TO isize ;
READ FILE(matt2) INTO(k) KEY(i) ;
/* is delta(i) specified ? */;

loop1: DO j=1 TO nospc ;
IF ispc(j)=i THEN GO TO 1b1 ;
END loop1 ;
IF k(i)=O THEN GO TO 1b4 ;
/* delta(i) not specified. */;
/* reduce column i to zero. */;

loop3: DO j=1 TO iband-1 ;
ii=i+j ;
/* ii is the row number. */;
IF ii>isize THEN GO TO 1b4 ;
READ FILE(matt2) INTO(kn) KEY(ii) ;
con=kn(i)/k(i) ;

loop2: DO jj=i TO i+iband-1 ;
/* jj is the column number. */;
IF jj>isize THEN GO TO 1b3 ;
kn(jj)=kn(jj)-k(jj)*con ;
END loop2 ;

1b3: REWRITE FILE(matt2) FROM(kn) KEY(ii) ;
p(ii)=p(ii)-p(i)*con ;

1b2: END loop3 ;
GO TO 1b4 ;

1b1: /* delta(i) specified. */;
IF delta(i)=0 THEN GO TO 1b4 ;
/* change the values of p(). */;

loop5: DO j=i TO iband+i-1 ;
IF j>isize THEN GO TO 1b4 ;
p(j)=p(j)-delta(i)*k(j) ;
END loop5;
END loop4;
CLOSE FILE(matt2);
RETURN;
END;
BAKSUB: PROCEDURE (delta, p, ispc, isize, iband, nospc);
DECLARE matt2 FILE ENV(REGIONAL(1) F(216));
DECLARE k(27);
OPEN FILE(matt2) DIRECT INPUT;
lop4: DO i=1 TO isize;
/* ii is the row number starting with the last. */
ii=isize+1-i;
READ FILE(matt2) INTO(k) KEY(ii);
IF k(ii)=0 THEN GO TO lb3;
/* is ii a specified deflection? */
lop1: DO j=1 TO nospc;
IF ispc(j)=ii THEN GO TO lb1;
END lop1;
/* ii is not a specified deflection calculate delta(ii). */
sum=0;
lop2: DO j=1 TO iband-1;
jj=ii+j;
IF jj>isize THEN GO TO lb2;
sum=sum*k(jj)*delta(jj);
END lop2;
lop3: DO j=1 TO iband-1;
jj=ii+j;
IF jj>isize THEN GO TO lb4;
sum=sum+k(jj)*delta(jj);
END lop3;
lop4: p(ii)=-p(ii)+sum;
lop5: RETURN ;
END ;
PROCEDURE (p,ispc,nospc,x,ndf);
DECLARE dir CHAR(1);
PUT LIST(' ');
PUT LIST('Deflections (in or rad)');
PUT LIST('Joint # Rotation Def. X Def. Y');
j=0;
DO i=1 TO ndf BY 3;
j=j+1;
PUT EDIT(j,x(i),x(i+1)*12,x(i+2)*12)(F(6),(3) (X(2),E(10,3)));
END;
PUT LIST(' ');
PUT LIST('Reactions (k or K*ft)');
PUT LIST('Joint # Direction Force or Moment');
DO i=1 TO nospc;
j=mod(ispc(i),3);
IF j=0 THEN dir='Y';
IF j=2 THEN dir='X';
IF j=1 THEN dir='M';
j=ispc(i);
k=ceil(ispc(i)/3);
PUT IMAGE(k,dir,p(j))(im1);
END;
im1: IMAGE;
--- ---------
RETURN ;
END ;
FORCE:

PROCEDURE (nm,E,X,H,V,XI,jts,jte,mem,Fo,AREA);
DECLARE f(3) DEC(4);
PUT LIST(' ');
PUT LIST('Member End Loads (K or K*ft)');
PUT LIST('Member Axial Load Joint Moment Joint Moment');
PUT LIST(' (average)');

lop1: DO i=1 TO nm;
 ii=jts(i)*3-2;
 jj=jte(i)*3-2;
 xl=sqrt(H(i)**2+V(i)**2);
 EA=E*AREA(i)/xl;
 EI1=E*XI(i)/xl;
 EI2=EI1/xl;
 sin1=V(i)/xl;
 cos1=H(i)/xl;
 f(1)=-EA*cos1*X(ii+1)-EA*sin1*X(ii+2);
 f(1)=f(1)+EA*cos1*X(jj+1)+EA*sin1*X(jj+2);
 f(2)=4*EI1*X(ii)+6*EI2*sin1*X(ii+1);
 f(2)=f(2)-6*EI2*cos1*X(ii+1)+2*EI1*X(jj);
 f(2)=f(2)-6*EI2*sin1*X(jj+1)+6*EI2*X(jj+2)*cos1;
 f(3)=f(2)-2*EI1*X(jj+1)+2*EI1*X(jj);
 f(2)=f(2)*Fo(i,1);
 f(3)=f(3)+Fo(i,2);
 IF XI(i)=0 THEN GO TO lb2;
 PUT EDIT(mem(i),f(1),jts(i),f(2),jte(i),f(3))(x(2),A(3),F(10,2),X(4),2)(X(4),
 F(2),X(4),F(10,2),X(4));
GO TO lb1;

lb2: PUT EDIT(mem(i),f(1))(x(2),A(3),F(10,2));

lb1: END lop1;
RETURN ;
END ;