Integration of a StatCom and battery energy storage

Zhiping Yang
Shen Chen
Lin Zhang
S. Atcitty

Mariesa Crow
Missouri University of Science and Technology, crow@mst.edu

Follow this and additional works at: http://scholarsmine.mst.edu/faculty_work

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Yang, Zhiping; Chen, Shen; Zhang, Lin; Atcitty, S.; and Crow, Mariesa, "Integration of a StatCom and battery energy storage" (2001). Faculty Research & Creative Works. Paper 184.
http://scholarsmine.mst.edu/faculty_work/184

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
Integration of a StatCom and Battery Energy Storage

Z. Yang (student member) C. Shen (member) L. Zhang (student member) M. L. Crow (senior member)
Electrical and Computer Engineering
University of Missouri-Rolla, Rolla, MO 65409-0040

S. Atcitty (member)
Power Electronics and Custom Controllers
Sandia National Laboratories, Albuquerque, NM 87185-0537

Abstract—The integration of an energy storage system, such as battery energy storage (BESS), into a FACTS device can provide dynamic decentralized active power capabilities and much needed flexibility for mitigating transmission level power flow problems. This paper will introduce an integrated StatCom/BESS for the improvement of dynamic and transient stability and transmission capability; compare the performance of the different FACTS/BESS combinations, and provide experimental verification of the proposed controls on a scaled StatCom/BESS system.

Keywords. FACTS, Battery Energy Storage, Power System Dynamic Stability, Control System Synthesis