12-2004

2004 Supplement to the Standard for Cold-Formed Steel Framing Prescriptive - Method for One and Two Family Dwellings, 2001 Edition

American Iron and Steel Institute

Follow this and additional works at: http://scholarsmine.mst.edu/ccfss-aisi-spec

Part of the Structural Engineering Commons

Recommended Citation
http://scholarsmine.mst.edu/ccfss-aisi-spec/144

This Technical Report is brought to you for free and open access by the Wei-Wen Yu Center for Cold-Formed Steel Structures at Scholars' Mine. It has been accepted for inclusion in AISI-Specifications for the Design of Cold-Formed Steel Structural Members by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
AISI STANDARD

2004 Supplement to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition

Supplement to AISI/COFS/PM-2001

Endorsed by:

Steel Framing Alliance™
DISCLAIMER

The material contained herein has been developed by the American Iron and Steel Institute Committee on Framing Standards. The Committee has made a diligent effort to present accurate, reliable, and useful information on cold-formed steel framing design and installation. The Committee acknowledges and is grateful for the contributions of the numerous researchers, engineers, and others who have contributed to the body of knowledge on the subject. Specific references are included in the Commentary.

With anticipated improvements in understanding of the behavior of cold-formed steel framing and the continuing development of new technology, this material may eventually become dated. It is anticipated that AISI will publish updates of this material as new information becomes available, but this cannot be guaranteed.

The materials set forth herein are for general purposes only. They are not a substitute for competent professional advice. Application of this information to a specific project should be reviewed by a design professional. Indeed, in many jurisdictions, such review is required by law. Anyone making use of the information set forth herein does so at their own risk and assumes any and all liability arising there from.
PREFACE

The American Iron and Steel Institute (AISI) Committee on Framing Standards (COFS) has developed this 2004 Supplement to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition [Supplement] to provide revisions and updates to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings, 2001 Edition [Prescriptive Method].

Also included in this document, as User Notes, are the Errata to the Standard for Cold-Formed Steel Framing – Prescriptive Method for One and Two Family Dwellings [Errata], dated September 29, 2004. User Notes are not part of the Supplement, but are provided as an aid to the reader. These Errata have also been incorporated in the 2nd Printing of the Prescriptive Method.

The Committee acknowledges and is grateful for the contributions of the numerous engineers, researchers, producers and others who have contributed to the body of knowledge on the subjects. The Committee wishes to also express their appreciation for the support and encouragement of the Steel Framing Alliance.
## AISI COMMITTEE ON FRAMING STANDARDS

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Haws, <em>Chairman</em></td>
<td>NUCONSTEEL</td>
</tr>
<tr>
<td>Steve Fox, <em>Vice Chairman</em></td>
<td>Canadian Sheet Steel Building Institute</td>
</tr>
<tr>
<td>Jay Larson, <em>Secretary</em></td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>Don Allen</td>
<td>Steel Stud Manufacturers Association</td>
</tr>
<tr>
<td>John Butts</td>
<td>John F. Butts &amp; Associates</td>
</tr>
<tr>
<td>Brad Cameron</td>
<td>Keymark Engineering</td>
</tr>
<tr>
<td>John Carpenter</td>
<td>Alpine Engineered Products</td>
</tr>
<tr>
<td>Nader Elhajj</td>
<td>NAHB Research Center</td>
</tr>
<tr>
<td>Jeff Ellis</td>
<td>Simpson Strong-Tie</td>
</tr>
<tr>
<td>Ray Frobosilo</td>
<td>Super Stud Building Products</td>
</tr>
<tr>
<td>Michael Gardner</td>
<td>Gypsum Association</td>
</tr>
<tr>
<td>Greg Greenlee</td>
<td>USP Structural Connectors</td>
</tr>
<tr>
<td>John Heydon</td>
<td>Heydon Building Systems</td>
</tr>
<tr>
<td>Jeff Klaiman</td>
<td>ADTEK Engineers</td>
</tr>
<tr>
<td>Roger LaBoube</td>
<td>University of Missouri-Rolla</td>
</tr>
<tr>
<td>John Matsen</td>
<td>Matsen Ford Design Associates</td>
</tr>
<tr>
<td>Michael Meek</td>
<td>Allied Studco</td>
</tr>
<tr>
<td>Kenneth Pagano</td>
<td>Scosta Corporation</td>
</tr>
<tr>
<td>Nabil Rahman</td>
<td>The Steel Network</td>
</tr>
<tr>
<td>Greg Ralph</td>
<td>Dietrich Industries</td>
</tr>
<tr>
<td>Gary Rolih</td>
<td>Senco Fastening Systems</td>
</tr>
<tr>
<td>Reynaud Serrette</td>
<td>Santa Clara University</td>
</tr>
<tr>
<td>Fernando Sesma</td>
<td>California Expanded Metal Products</td>
</tr>
<tr>
<td>Marge Spencer</td>
<td>Compass International</td>
</tr>
<tr>
<td>Peter Tian</td>
<td>Berridge Manufacturing</td>
</tr>
<tr>
<td>Steven Walker</td>
<td>Steven H. Walker, P.Eng.</td>
</tr>
<tr>
<td>Lei Xu</td>
<td>University of Waterloo</td>
</tr>
<tr>
<td>Rahim Zadeh</td>
<td>Marino\Ware</td>
</tr>
</tbody>
</table>
PRESCRIPTIVE METHODS SUBCOMMITTEE

Steve Fox, Chairman  
Canadian Sheet Steel Building Institute
Jay Larson, Secretary  
American Iron and Steel Institute
Don Allen  
Steel Stud Manufacturers Association
Nader Elhajj  
NAHB Research Center
Michael Gardner  
Gypsum Association
Greg Greenlee  
USP Structural Connectors
Richard Layding  
NUCONSTEEL
Hank Martin  
American Iron and Steel Institute
John Matsen  
Matsen Ford Design Associates
Dean Peyton  
Anderson-Peyton Engineers
Greg Ralph  
Dietrich Industries
Fernando Sesma  
California Expanded Metal Products
Tim Waite  
Simpson Strong-Tie
Lei Xu  
University of Waterloo
Rahim Zadeh  
Marino\Ware
This Page Intentionally Left Blank
# TABLE OF CONTENTS

2004 SUPPLEMENT TO THE

STANDARD FOR COLD-FORMED STEEL FRAMING –

PRESCRIPTIVE METHOD FOR ONE AND TWO FAMILY DWELLINGS, 2001 EDITION

<table>
<thead>
<tr>
<th>DISCLAIMER</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>AISI COMMITTEE ON FRAMING STANDARDS</td>
<td>iv</td>
</tr>
<tr>
<td>PRESCRIPTIVE METHODS SUBCOMMITTEE</td>
<td>v</td>
</tr>
</tbody>
</table>

## A. GENERAL

- **A4** Limitations on Framing Members .................................................. 1
- **A4.5** Hole Patching ........................................................................ 1

## E. WALL FRAMING

- **E2** Wall to Foundation or Floor Connection ........................................ 2
- **E3** Minimum Stud Sizes ...................................................................... 3
- **E7** Headers .................................................................................... 3
  - **E7.3** Double L-Headers ................................................................ 3
- **E13** Braced Wall Design in High Wind Areas ....................................... 4
  - **E13.3** Connections of Walls in High Wind Areas ........................... 4

## F. ROOF FRAMING

- **F2** Ceiling Joists ........................................................................... 5
- **F2.4** Ceiling Joist Top Flange Bracing ............................................ 5
- **F7** Roof Framing Connections in High Wind Areas ............................. 6
  - **F7.2** Uplift Connection – Roof Rafter or Truss to Wall .................. 6
  - **F7.3** Ridge Strap Connection .................................................... 7
2004 SUPPLEMENT TO THE
STANDARD FOR COLD-FORMED STEEL FRAMING –
PRESCRIPTIVE METHOD FOR ONE AND TWO FAMILY
DWELLINGS, 2001 EDITION

A. GENERAL

A4 Limitations on Framing Members

(User Note: Revise the text in Section A4.5 on Hole Patching, as shown below.)

A4.5 Hole Patching

Web holes violating any of the requirements set forth in Section A4.4 shall be patched with if the depth of the hole does not exceed 70% of the flat width of the web and the length of the hole measured along the web does not exceed 10 inches (254 mm) or the depth of the web, whichever is greater. The patch shall be a solid steel plate, stud section, or track section in accordance with Figures A4-3 or A4-4. The steel patch shall be of a minimum thickness as the receiving member and shall extend at least 1 inch (25.4 mm) beyond all edges of the hole. The steel patch shall be fastened to the web of the receiving member with No.8 screws spaced no greater than 1 inch (25.4 mm) center-to-center along the edges of the patch with minimum edge distance of 1/2 inch (12.7 mm).

Structural members shall be replaced or designed in accordance with accepted engineering practices when web holes exceed the following size limits:

(a) The depth of the hole, measured across the web, exceeds 70% of the depth flat width of the web; and/or,

(b) The length of the hole measured along the web, exceeds 10 inches (254 mm) or the depth of the web, whichever is greater.
E. WALL FRAMING

E2 Wall to Foundation or Floor Connection

(User Note: Revise the text in Section E2 on Wall to Foundation or Floor Connection, add Figure E2-4, and revise the first row in Table E2-1 on Wall to Foundation or Floor Connection Requirements, as shown below.)

Structural walls shall be anchored to foundations or floors in accordance with Table E2-1 and Figures E2-1 through E2-3 E2-4.

Table E2-1

<table>
<thead>
<tr>
<th>Framing Condition</th>
<th>Wind Speed (mph), Exposure, &amp; Seismic Design Category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85 A/B or SDC$^3$ A,B,C</td>
</tr>
<tr>
<td>Wall bottom track to floor joist or track</td>
<td>1-No.8 screw at 12&quot; o.c.</td>
</tr>
</tbody>
</table>

(User Note: Table E2-1 continues unchanged.)
E3 Minimum Stud Sizes

(User Note - Errata: In Tables E3-1a, E3-2a, E3-3a, E3-4a, E3-5a, E3-6a, E3-7a, E3-8a, E3-9a and E3-10a, for the case of wind exposure C, 350S162 member size, 24-inch spacing and 8-foot stud length, reverse the values for 120 mph and 130 mph wind speeds.)

(User Note - Errata: In Table E3-4b, for the case of 130 mph wind speed exposure C, 350S162 member size, 24-inch spacing, 8-foot stud and 20 psf snow load, change the value from “543” to “54”.)

E7 Headers

(User Note: Revise the text in Section E7.3 on Double L-Headers and replace Figure E7-3, as shown below.)

E7.3 Double L-Headers

Double L-headers shall be constructed in accordance with Figure E7-3 and Tables E7-10 through E7-23. An L-header consists of a cold-formed steel angle with one short leg lapping over the top track of the wall and one leg extending down the side of the wall above window or door openings as shown in Figure E7-3. Each angle is fastened to top track above an opening with No.8 screws spaced at 12 inches (305 mm) on center. The "L" angle is placed on both sides of the wall opening to form a double angle L-shaped header (double L-header). The long leg of the L-header angle shall be attached to each king and cripple stud(s) and a minimum of one king stud at each end with one No.8 screw at top and bottom.

![Figure E7-3 Double L-Header](image-url)
E13.3 Connections of Walls in High Wind Areas

E13.3.3 Header Uplift Connections

When it is necessary to make an uplift strap connection to a back-to-back header the header beam shall be reinforced as shown in Figure E13-1. Uplift straps shall be installed on both sides of a back-to-back header beam (inside and outside of the wall) when the header is supporting loads from the roof and ceiling only.

![Figure E13-1 Back-to-Back Header Beam Reinforcement for Uplift Strap Connection](image-url)
F. ROOF FRAMING

F2 Ceiling Joists

(User Note: Revise Section F2.4 on Ceiling Joist Top Flange Bracing and add Figures F2-5 and F2-6, as shown below.)

F2.4 Ceiling Joist Top Flange Bracing

The top flanges of ceiling joists shall be laterally braced as required by Tables F2-1 through F2-8, with a minimum:

1. 33 mil (0.84 mm) C-shaped member in accordance with Figure F2-5, or
2. 33 mil (0.84 mm) track section in accordance with Figure F2-5, or
3. 33 mil (0.84 mm) hat section in accordance with Figure F2-5, or
4. 54 mil (1.37 mm) 1-1/2" cold-rolled channel section in accordance with Figure F2-5, or
5. 1-1/2 inch x 33 mil (38 mm x 0.84 mm) continuous steel strap in accordance with Figure F2-6.

Lateral bracing shall be installed perpendicular to the ceiling joists and shall be fastened to the top flange of each joist with one No.8 screw. Blocking shall be installed between joists inline with strap bracing at the termination of all straps and at a maximum spacing of 12 feet (3.66 m) measured perpendicular to the joists. Lateral bracing shall be fastened to blocking with two No.8 screws. Ends of lateral bracing shall be attached to blocking or anchored to a stable building component with two No.8 screws.

Exception: When strap bracing and 3.5" (88.9 mm) ceiling joists are used, strap bracing shall be fastened to blocking with three No.8 screws and ends of the strap bracing shall be attached to blocking or anchored to a stable building component with three No.8 screws.

Figure F2-5 Ceiling Joist Top Flange Bracing with C-Shape, Track or Cold-Rolled Channel Section
Figure F2-6 Ceiling Joist Top Flange Bracing with Continuous Steel Strap and Blocking

F7 Roof Framing Connections in High Wind Areas

(User Note - Errata: In Table F7-1, for the case of 130 mph basic wind speed, exposure C, 24-inch framing spacing and 28-foot roof span, change the value from “9130” to “913”.)

(User Note: Revise Section F7.3 on Ridge Strap Connection, as shown below.)

F7.2 Uplift Connection – Roof Rafter or Truss to Wall

<table>
<thead>
<tr>
<th>Framing Spacing (in.)</th>
<th>Roof Span (ft)</th>
<th>Required Connection Capacity (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>245</td>
<td>336</td>
</tr>
<tr>
<td>24</td>
<td>413</td>
<td>671</td>
</tr>
<tr>
<td>28</td>
<td>557</td>
<td>763</td>
</tr>
<tr>
<td>32</td>
<td>624</td>
<td>855</td>
</tr>
<tr>
<td>36</td>
<td>691</td>
<td>947</td>
</tr>
<tr>
<td>40</td>
<td>804</td>
<td>1101</td>
</tr>
</tbody>
</table>
F7.3 Ridge Strap Connection

Roof rafters shall be provided with a connection at the ridge line to transfer tension loads. The ridge connection shall be capable of resisting the unit loads listed in Table F7-3 multiplied by the appropriate spacing multiplier. Alternatively, a 1-1/4 inch (32 mm) by 33 mil (0.84 mm) steel ridge strap shall be provided with minimum No.8 screws on each end of the strap as required in Table F7-3. The number of screws shall be increased to account for the spacing multipliers shown in the table. The size of the ridge strap shall be in accordance with Table F7-4.