1912

The design of a water supply distributing system for the City of St. James, Missouri

Arch W. Naylor

John Hurtgen

Follow this and additional works at: http://scholarsmine.mst.edu/bachelors_theses

Part of the Civil Engineering Commons

Department: Civil, Architectural and Environmental Engineering

Recommended Citation

Naylor, Arch W. and Hurtgen, John, "The design of a water supply distributing system for the City of St. James, Missouri" (1912). Bachelors Theses. Paper 106.
THE DESIGN OF A WATER SUPPLY DISTRIBUTING SYSTEM FOR THE CITY OF ST. JAMES, MISSOURI.

by

Arch Waugh Naylor

John Hartgen

A

THESIS

submitted to the faculty of the
SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI
in partial fulfillment of the work required for the
DEGREE OF
BACHELOR OF SCIENCE IN CIVIL ENGINEERING

Rolla, Mo.

1912

Approved by

Professor of Civil Engineering.

14241
TABLE OF CONTENTS

1. Design of the distributing system.
2. Source of supply: (a) Investigation of Brook Spring. (b) Deep wells.
4. Reinforced concrete elevated tank.
5. Estimated cost of distributing system and tank.
6. Diagrams and plans.
 (A) Diagram showing the rating of Price Current Meter.
 (B) Plat of St. James, Mo., showing location of tank, pipe lines and accessories.
 (C) Plan of tank and its connections to the distributing system.
THE DESIGN OF THE DISTRIBUTING SYSTEM.

The design of the distributing system, being governed by the fire requirements, it is proposed to provide three 250-gallon fire streams under a hydrant pressure of 70 pounds per square inch for the business section, from Scioto St. to Bowman St., and from Seymour St. to Meramec St., with a maximum length of hose of six hundred feet; and two fire streams of a minimum total capacity of 425 gallons, each under a hydrant pressure of 72 pounds per square inch for the outlying district; the water to enter the system under a pressure of 100 pounds per square inch.

Allowing a maximum loss of pressure of 28 pounds per square inch at the extremity of the system, the intersection of Meramec and Aida St's, due to friction in the pipe, it is found by the system of eliminating cross lines and substituting equivalent diameters, as shown by accompanying computations and sketches, that 425 gallons per minute are available at that point under a hydrant pressure of 60 pounds per square inch.
The population of St. James, Mo., by the census of 1910, is 1100 but provision is made for a possible increase to 1500 with a rate of consumption of 100 gallons per capita per day. For small cities, where the fire demand is relatively large, the assumption is made that it will increase but little with the increase of population.

In the design of this system it is intended to provide a supply adequate to meet the demands of the territory covered, for a period of twenty years. The system can easily be extended to take in new territory without increasing the size of the mains here designed.

The system contains 375 feet of eight inch, 4240 feet of six inch, and 11300 feet of four inch cast-iron pipe with the necessary valves and fittings, designed to withstand a pressure of 130 pounds per square inch.
The "Diagram for Calculating Cast-Iron Pipes" given on page 243 of Turneaure and Russell's "Public Water Supplies", edition of 1910, was used in these computations.

District (1)

Assumed loss of head from A to B, 20'
Discharge thru line A-B, gallons 215
Discharge thru line A-C-D-B, gal. 80
Equivalent diameter of pipe, 500 ft. long, which will discharge 295 gallons with a loss of head of 20', is 4.5 inches.

District (2)

Assumed discharge thru line B-E-C-A, gallons 400
Loss of head B-E plus C-A, feet 19.04'
Loss of head E-D 32.50'
Loss of head D-C 52.80'
Equivalent diameter of pipe, 2060 feet long, which will give a loss of head of 104.3' when discharging 400 gallons, is 4.7 inches.
District (2), continued.

Assumed loss of head from A to B, 20'
Discharge thru line A-B, gallons 150
Discharge thru line B-E-C-A, gal. 160
Equivalent diameter of pipe, 940 ft.
long which will discharge 310 gallons with
a loss of head of 20 feet, is 5.2 inches.

District (3)

Assumed discharge thru line A-C-D-B,
gallons 300
Loss of head C-D plus D-B, 106.4'
Loss of head A-C 5.8'
Equivalent diameter of pipe, 2100 ft.
long which will give a loss of head of
112.2 ft. when discharging 300 gallons
is 4.3 inches.

Assumed loss of head from A to B, 20'
Discharge thru line A-B, gallons 150
Discharge thru line A-C-D-B, gal. 115
Equivalent diameter of pipe, 940 feet
long which will discharge 265 gallons with
a loss of head of 20 feet, is 5.8 inches.
District (4)

Assumed discharge thru line A-C-D-B,
gallons 300

Loss of head, C-D 177.1'
Loss of head, A-C 29'
Loss of head, D-B 11.0'

Equivalent diameter of pipe, 3830 ft. long, which will give a loss of head of 189.0 feet when discharging 300 gallons is 4.3 inches.

Assumed loss of head from A to B, 20'
Discharge thru line A-B, gallons 380
Discharge thru line A-C-D-B, gal. 85

Equivalent diameter of pipe, 1230 ft. long, which will discharge 465 gallons with a loss of head of 20 ft. is 6.5 in.

District (5)

Assumed discharge thru line B-C-D-E-A,
gallons 400

Loss of head, B-C 2.3'
Loss of head, C-D plus E-A 14.5'
Loss of head, E-D 32.9'
District (5), continued.

Equivalent diameter of pipe, 1980 ft. long, which will give a loss of head of 49.7 feet when discharging 400 gallons, is 5.6 inches.

Assumed loss of head from A to B, 20'
Discharge thru line A-B, gallons 150
Discharge thru line B-C-D-E-A, gal's 235

Equivalent diameter of pipe, 940 ft. long, which will discharge 585 gallons with a loss of head of 20 ft., is 5.7 inches.

District (6)

Assumed discharge thru line A-C-B,
gallons 400
Loss of head A-C 17.7'
Loss of head C-B 21.6'

Equivalent diameter of pipe, 1980 ft. long, which will give a loss of head of 39.3 feet when discharging 400 gallons, is 5.8 inches.

Assumed loss of head from A to B, 20'
Discharge thru line A-B, gallons 520
Discharge thru line A-C-B, gal's 270
District (6), continued.

Equivalent diameter of pipe, 1040 ft. long, which will discharge 795 gallons with a loss of head of 20 feet, is 7.5 inches.

Determination of the discharge available, for fire purposes, at the extremity of the system, the intersection of Meramec and Aida St.'s, and the loss of head or pressure between the pumps and that point.

Assumed a discharge thru line A-B---E,

<table>
<thead>
<tr>
<th>Gallons</th>
<th>Loss of head A-B</th>
<th>Loss of head B-C</th>
<th>Loss of head C-D</th>
<th>Loss of head D-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3.64'</td>
<td>1.33'</td>
<td>9.34'</td>
<td>75.60'</td>
</tr>
</tbody>
</table>

Equivalent diameter of pipe, 3200 ft. long which will give a loss of head of 89.9 feet when discharging 300 gallons is 4.8 inches.

Assumed a discharge thru line A-F-E,

<table>
<thead>
<tr>
<th>Gallons</th>
<th>Loss of head A-F</th>
<th>Loss of head F-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>22.26'</td>
<td>154.70'</td>
</tr>
</tbody>
</table>
Equivalent diameter of pipe, 4,330 feet long, which will give a loss of head of 177.0 feet when discharging 300 gallons, is 4.5 inches.

Assuming a loss of head of 65 ft. from A to E,
Discharge thru line A-B---E, gallons 250
Discharge thru line A-F-E, gallons 175

A loss of head of 65 ft. is equivalent to a loss of pressure of 28 pounds per square inch. With a pressure, at the pumps, of 100 pounds per square inch the minimum hydrant pressure in the outlying district will be 72 pounds per square inch. This pressure will give one 250 gallon stream thru a maximum length of hose of 200 ft., and one 175 gallon stream thru a maximum length of hose of 450 ft. The above is the maximum necessary length of hose.

The fire hydrants are to be placed at the block corners, as shown on plat. Those in resident districts to be one stream hydrants and those in the business section to be two stream hydrants.

The plan of the distributing system is shown on the plat.
SOURCE OF SUPPLY.

Brook Spring.

The situation of Brook Spring, as determined by stadia measurements, is 12000 feet East of and at an elevation 500 feet below the site of the proposed reservoir. Measurements with a Cippeletti weir show a flow of 230 gallons per minute.

The excessive cost of piping and pumping renders Brook Spring unworthy of consideration as a source of supply.

Deep Wells.

As an abundant supply for private uses and for the St. James Ice and Power Plant is obtained from wells 150 to 200 feet deep, it is assumed that a supply sufficient to meet the demands of the City can be had at a depth of from 500 to 600 feet. In the City of Rolla an abundant supply has been found at the last named depth.
An investigation of Meramec Springs as a source of power was made August 16, 1911.

The flow was determined by taking readings with the Price Current Meter at five-feet intervals along three different cross-sections of the Spring Branch where eddy currents caused by riffle were a minimum. The least of these readings shows a flow of 84 cubic feet per second.

At a point 500 feet distant from the foot of the present dam, a head of ten feet can be obtained by making the present dam water tight. With a power plant efficiency of 75% this would develop approximately 70 horse power, with an additional 7 horse power for each one foot increase in the height of the dam.

The winter preceding, and the season of 1911 being exceedingly dry it is probable that the above flow of 84 cubic feet per second is about a minimum.

The Price Current Meter was rated by rowing a boat at constant speed and measuring the distance covered in ten revolutions of the wheel by triangulation.
DESIGN OF REINFORCED CONCRETE TANK.

Dimensions:

- Diameter: 20 ft.
- Depth: 21 ft.
- Columns: 36 ft.
- Capacity: 56,000 gal.

Unit stresses:

- Steel: 15,000 lbs/sq.in.
- Concrete columns: 650 "
- Concrete floor: 710 "

Floors and beams were designed by the straight line formulae of Turneasure and Maurer.

The stresses in the columns, due to the wind, were based upon an assumed maximum pressure of 40 pounds per square foot on the vertical projection of the tank.
<table>
<thead>
<tr>
<th>Depth T</th>
<th>Diameter</th>
<th>Bars</th>
<th>Spacing</th>
<th>No. of Rods</th>
<th>Feet Lbs/ft</th>
<th>Total Lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.5</td>
<td>14687</td>
<td>6</td>
<td>6/8"</td>
<td>3"</td>
<td>26</td>
<td>884</td>
</tr>
<tr>
<td>22.5</td>
<td>14062</td>
<td>6</td>
<td>6/8"</td>
<td>3"</td>
<td>26</td>
<td>884</td>
</tr>
<tr>
<td>21.5</td>
<td>13437</td>
<td>7</td>
<td>6/8"</td>
<td>5"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.5</td>
<td>12812</td>
<td>7</td>
<td>6/8"</td>
<td>5"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>12187</td>
<td>8</td>
<td>6/8"</td>
<td>5"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5</td>
<td>11562</td>
<td>9</td>
<td>6/8"</td>
<td>6"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>10937</td>
<td>2.92</td>
<td>9/16"</td>
<td>5"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>16.5</td>
<td>10312</td>
<td>3</td>
<td>9/16"</td>
<td>5"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>15.5</td>
<td>9687</td>
<td>4</td>
<td>9/16"</td>
<td>6"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>14.5</td>
<td>9062</td>
<td>5</td>
<td>9/16"</td>
<td>6 1/4"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>13.5</td>
<td>8437</td>
<td>6</td>
<td>9/16"</td>
<td>6 3/4"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>12.5</td>
<td>7812</td>
<td>7</td>
<td>1/2"</td>
<td>6"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>11.5</td>
<td>7187</td>
<td>8</td>
<td>1/2"</td>
<td>6"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>10.5</td>
<td>6562</td>
<td>9</td>
<td>1/2"</td>
<td>6 1/2"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>9.5</td>
<td>5937</td>
<td></td>
<td>1/2"</td>
<td>6 1/2"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>8.5</td>
<td>5312</td>
<td></td>
<td>1/2"</td>
<td>6 1/2"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>7.5</td>
<td>4687</td>
<td></td>
<td>7/16"</td>
<td>8 1/2"</td>
<td>14</td>
<td>476</td>
</tr>
<tr>
<td>6.5</td>
<td>4062</td>
<td></td>
<td>7/16"</td>
<td>8 1/2"</td>
<td>14</td>
<td>476</td>
</tr>
</tbody>
</table>
DESIGN OF FLOOR SLAB.

Moment at center of 12" strip along the line A-B on plan = \(\frac{wl^2}{10} = \frac{(1500)(4)(4)(12)}{10} = 28800 \text{ inch pounds.} \)

\[A_s = \frac{M}{f_y(0.87)(d)} = \frac{28800}{15000(0.87)(4.5)} = 0.487 \text{ sq. in's of steel.} \]

Assumed \(d = 4.5" \) \(\text{Floor 6" thick.} \)

Percentage of steel = \(p = \frac{.487}{(4.5)(12)} = 0.9\% \).

Stress in concrete = \(f_c = \frac{28800}{(.17)(12)(4.5)^2} = 710 \text{ pounds per square inch.} \)

Use 1/2" square bars, spaced 6" c-c and expanded metal as shown on plan.

DESIGN OF RADIAL FLOOR BEAM.

Maximum moment by graphics, as shown on plan = 1,071,000 inch-pounds.

Area of steel = \(A_s = \frac{M}{f_y(d-l/3t)} \). \(t = 6". \)

Assumed \(d = 16". \) Then \(A = 4.5 \text{ square inches.} \)

Use five 1" square bars as shown on plan.

DESIGN OF CROSS FLOOR BEAM.

Approximate length, 7". Width of flange, 48", to carry a uniform load of 1500 pounds per square foot for the full width. \(t = 6", \text{ b = 48", d = 14.5".} \)
\[M = \frac{wl^2}{10} = \frac{(1500)(7)(7)(12)}{10} = 88200 \text{ inch-lbs.} \]

Area of steel = \[A_s = \frac{M}{\frac{2}{3}(d-1/3t)} = .5 \text{ square inches.} \]

Use two 3/4 inch square rods as shown.

DETERMINATION OF STRESS IN COLUMN DUE TO WIND.

In the determination of the stress in the column due to wind loads a pressure of 40 pounds per square inch on the vertical projection of the tank alone was taken instead of a pressure of 50 pounds per square inch on the vertical projection of both the tank and the columns.

The stress on the outside post \[A = \frac{M y}{I}. \]

\[I = \text{moment of inertia with respect to the neutral axis as shown on accompanying sketch.} \]

\[y = \text{the normal from the neutral axis to the center of the post.} \]

\[M = \text{bending moment at foot of column due to the wind load on tank, considering the structure as a cantilever beam.} \]

\[M = (20)(24)(40)(48)(12) = 11,050,000 \text{ inch pounds.} \]
I of column \(A \) = \((\text{area})(r)^2\).
\[a = (10)(10) \text{ plus } 15(4.76) = 171.4 \text{ sq.in.} \]
\[a = \text{area of transformed section when } n = \frac{E/E} = 15. \]
\[r = (14)(12) = 168 \text{ inches.} \]
\[I = 171.4(168)(168) = 4,840,000. \]
I of columns \(B \) plus \(C \) = \(2ar^2 = (2)(171.4)(84) \)
\[(84) = 2,420,000. \]
\[r = 84 \text{ inches.} \]
I of whole section = \((2)(A) \text{ plus } B \text{ plus } C\)
\[= (2)(4,840,000) \text{ plus } (2)(2,420,000) = 14,520,000. \]
Stress in concrete per square inch = \(f = 128.1 \text{lbs.} \)
Total wind stress on one column = \(171.4(128) = 21,900 \text{ pounds.} \)
Total compressive stress at foot of column due to the dead load of the tank when empty and the column = 30700 pounds. As the maximum tensile stress due to the wind load is less than the compressive stress due to the dead load of the tank when empty the column can never be subjected to tension.

The maximum compressive stress at the foot of the column = wind load(128 lbs), tank walls and 2/3 of floor (125 lbs), column and braces(57 lbs), and water(320 lbs) = 630 pounds per square inch on the transformed section.
This estimate is based upon pipe of sufficient thickness to withstand a pressure of 130 pounds per square inch, equivalent to a head of 300 feet.

<table>
<thead>
<tr>
<th>Diam.</th>
<th>Thick.</th>
<th>Weight per Ft.</th>
<th>Total Feet</th>
<th>Total Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>.45"</td>
<td>21.7#</td>
<td>11500</td>
<td>248500#</td>
</tr>
<tr>
<td>6"</td>
<td>.51</td>
<td>35.5#</td>
<td>4240</td>
<td>151000#</td>
</tr>
<tr>
<td>8"</td>
<td>.58</td>
<td>52.0#</td>
<td>375</td>
<td>19500#</td>
</tr>
</tbody>
</table>

Total weight, 415500#.

Lead for 1000-4" joints @ 5.5# per joint = 5500#.

375-6" @ 8.0# = 3000#.

35-8" @ 11.5# = 400#.

Total 8900#.

Hemp required, approximately 400 pounds.

208 tons of C.I. pipe @ $27.50 F.O.B. St. James, $5750.00

9000 pounds lead @ 4.5¢ per pound 400.00

400 pounds of hemp @ 2.5¢ per pound 10.00

Laying 16000 ft. pipe and backfilling @ 17.5¢ 2800.00

19 hydrants @ $25.00, setting same, @ $3.50 ea. 540.00
Brought forward, $9500.00

Two 8" valves @ $14.00, setting same $3.50 ea. $35.00
Three 6" valves @ $11.00, setting same $2.50 ea. $40.00
Seven 4" valves @ $8.00, setting same $2.00 ea. $70.00
Ten valve boxes, in place $30.00
4.6 tons fittings @ $50.00, F.O.B. St. James, $230.00
One automatic valve, in place $45.00

Total $10000.00

TANK.

Cement per cu. yd. $2.00
Sand and rock " " " $1.25
Lumber etc. (forms) " " " $1.25
Placing forms " " " $1.50
Placing concrete " " " $4.00

Total $10.00

163 cu. yds. concrete @ $10.00 $1630.00
18.5 " " " (pedestals) @ $7.00 $130.00
4000 pounds steel (tank walls) @ 2.25¢ $90.00
11000 " " " (columns) @ 4.00¢ $440.00
225 " " " (cen. column) @ 2.40¢ $6.00
Brought forward, $2296.00

765 pounds steel (floor) @ 2.25¢ 17.00
1200 " " (floor beams) @ 2.25¢ 27.00
200 " expanded metal @ 2.50¢ 5.00
Screen top, ladder and waterproofing 155.00

Total $2500.00