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Load Tests on Steel-Stud Walls 

by 

J. F. McDermott 

Summary 

Information required for steel-stud wall design was 

provided by a series of axial-compression tests and lateral-load 

tests conducted on solid-web and slit-web steel studs in wall panels 

with different sheathing materials and also on single studs. 

*Associate Research Consultant, u. S. Steel Research Laboratory, 
Monroeville, Pa. 
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Introduction 

The AISI "Specification for the Design of Cold-Formed 

Steel Structural Members"l)* applies to the design of solid-web 

steel studs with or without full lateral (in the plane of the wall) 

support, but does not apply directly to the design of (1) thermal 

(slit-web) studs regardless of support conditions or (2) solid-web 

studs with unsymrnetL·i..:::a.l partial support, that is, with exterior 

sheathing attached to one face of the studs but no interior sheathing 

attached to the other face. 

To obtain design information necessary for such use of 

wall studs, three types of tests were performed: (1) wall-

compression tests of thr8~-stud specim0ns with sheathing on either 

one or both side3, (2) lateral-loading (bending) tests of five-stud 

specimens with sheathin9 on either one or both sides, and (3) axial­

compression tests cf s~ngle stuc spec~mens without any intermediate 

lateral support, that is, without any support except at the ends of 

the stud. For each type of test, both solid and slit-web channel-

shaped cold-formed galvanized steel studs with stiffening lips were 

tested to provide a direct comparison of strengths. 

* See References. 
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Materials and Experimental Work 

Studs 

As shown in Figure l, the Super-C solid-web steel stud 

has l-l/2-inch (38.1 mm) flanges, l/2-inch (12.7 rnrn) stiffening 

lips, and either a 3- or a 3-l/2-inch-deep (76.2 or 88.9 rnrn) web. 

Hereafter, this solid-web steel stud will be referred to as the 

"solid" stud. The Super-C thermal slit-web stud, shown in Figure 2, 

has the same basic dimensions as the solid stud, but its web has a 

special pattern of longitudinal slits that reduce the conductance 

of heat across the web. Hereafter, this stud will be referred to 

as the "slit" stud. Typically, the top and bottom of the studs 

rest inside the transverse steel runner shown in Figure l. Both 

the solid and the slit studs were produced from ASTM A446 Grade C 

galvanized steel. The testing was limited to 3-l/2-inch deep 

20-gage and 18-gage solid and slit studs because it was anticipated 

that problems which could cause premature failures (that is, twisting, 

buckling) would be more critical in these specimens than in other 

commercially available studs of these types. 

Wall-Compression Tests 

Details of the wall panels used in the wall-compression 

tests are given in Table r. Generally, each specimen was constructed 

with a 90- by 72-inch (2.29 by 1.83 m) frame, Figure 3, consisting 

of three 90- or 89.5-inch-long (2.29 or 2.27 m) 18- or 20-gage 
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steel studs on 24-inch (0.61 m) centers. Load-distribution assem-

blies, shown in Figure 4, were connected to both the top and bottom 

of each specimen before testing. Sheating was attached to either 

one or both sides of the frame. The type of sheathing and the 

screw spacing along the studs are listed in Table I. 

Each wall-compression test specimen was placed vertically 

in the testing frame as shown in Figure 3. Details of the support 

at the top and bottom of the specimen appear in cross section in 

Figure 4. Load was applied by a 50-kip-capacity (222 kN) hydraulic 

jack reacting downward on a top spreader beam as shown in Figure 3. 

The load was transferred from the top spreader beam through two 

curved bearing bars to a beam which rested continuously on the 

specimen load distribution assembly. 

Lateral-Load Tests 

Details of the wall panels used in the lateral-loading 

tests are given in Table II. Generally, each specimen was constructed 

with a 90- by 97-5/8-inch (2.29 by 2.48 m) frame, Figure 5, consisting 

of five 87-inch-long (2.21 m) 18- or 20-gage studs, 24 inches 

(0.61 m) on center. 

sides of the frame. 

Sheathing was attached to either one or both 

The type of sheathing and the screw spacing 

along the studs are listed in Table II. 

A plastic air bag, placed between the specimen and a 

reaction system, was inflated during the test to apply a uniform 

load. The top and bottom edges of the specimen reacted against 
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beam assemblies that were held down by rods connected to load 

cells. Contact between the specimen and each beam assembly was a l­

l/2-inch-diarneter steel bar located on the center steel plate 

positioned over the 2 by 4 wood sill or header of the test specimen_ 

The test setup simulated uniform wind loading on a wall spanning 

86 inches (2.18 rn) between simple-beam end supports. For specimens 

with sheathing on only one side, the unsupported flange was in 

tension, as it would be in applications where the sheathing has 

been applied to the exterior face only. 

Single-Stud Compression Tests 

Details of the single-stud compression tests are given in 

Table III. The specimens were 96- or 20-inch-long (2.44 m or 

0.51 m) 18-gage slit and solid studs. 

The 20-inch-long studs were tested in a universal testing 

machine with bearing surfaces fixed against rotation; thus, the 

effective column length was 10 inches (25.4 em). Th2 test arrange-

ments for the 96-inch-long studs are shown in Figure 6. A l/4-inch-

thick (6.35 mm) steel plate was welded to each end of each stud, 

and the specimen was then placed in a vertical position, about 

2-l/2 inches (6.35 ern) away from a vertical wide-flange column that 

was connected to a test frame. Each end plate of the stud was 

bearing against a l/4-inch-thick plate having a l-inch-diameter 

(25.4 mrn) half pin welded to the outer horizontal surface and 

opposite the stud. Thus, the effective length of each stud was 
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98 inches (2.49 m) measured between the uuter surfaces of the top 

and bottom half pins. Each outer plate was adjusted, with the help 

of four horizontal set screws, so that the centerline of each half 

pin coincided with the weak axis of bending of the stud. The top 

half pin was bearing against a top bracket that was bolted to the 

wide-flange column. The bottom half pin was bearing against a 

plate welced to a guided piston that was free to twist. The specimen 

was loaded by a 20-kip-capacity (89 kN) jack that was inserted 

between the piston and a bottom bracket that was bolted to the 

wide-flange column. The center of the half pin at the stud end was 

aligned with the centerline of the piston. 

Test Results 

Wall-Compression Tests 

Deflections. A typical load-deflection curve for a wall-

compression test is given in Figure 7. The average axial deflection 

over a 78-inch (1.98 m) height is shown. The experimental vertical 

deflections were slightly less than the theoretical axial deflections 

based only on axial shortening (the dashed line) for a solid stud 

without sheathing. The difference was probably due either (1) to 

slip between the stud and the sheathing, so that the axial deflection 

of the sheathing was less than that of the stud, or (2) to composite 

action of the sheathing with the stud, resulting in a decrease in 

the axial deflection. The difference was somewhat smaller for 

Tests 3, 4, 12, and 13 where sheathing was on only one side. The 



STEEL-STUD WALLS 127 

theoretical axial shortening due to the observed lateral (perpendicu-

lar to the wall) deflections never exceeded 0.003 inch (0.08 mm). 

Progressively increasing lateral bending (perpendicular 

to the sheathing) occurred in all tests, probably because the studs 

were not exactly straight and because the axial loads did not 

consistently pass through the centroids of the stud cross sections, 

despite the precautions taken to achieve purely axial loading by 

the use of the round bearing bars centered with respect to the 

studs, Figure 4. 

The initial out-of-straightness, y
0

, that would cause a 

given lateral deflection, 6, is approximately equal to 

6 (1 - ~) 
p 

e 
yo p 

p 
e 

The eccentricity, e, of loading (distance from the axial load to 

the axis of bending at each end of the stud) that would cause a 

given lateral deflection, 6, is approximately equal to 

e 
BEl 6 

XX 

(1) 

( 2) 
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In these equations, P is the test axial load, Pe is the Euler load 

determined as 1.922 ) times the gross area times F~ as defined on 

page 23 of Reference 1, E is the modulus of elasticity (29,500 ksi 

or 203 GN/m 2 ), I is the strong-axis moment of inertia, and Lis 
XX 

the length of the stud measured center-to-center of the assumed 

pinned ends. Since both y
0 

and e are constants by definition, 

either Equation 1 or 2 implies that ~ varies in proportion to 

p 

1 
p 
p 

e 

Then, each p - ~ plot, such as in Figure 7, would be a smooth 

convex-upward curve, with the ratio of ~ at half the maximum load 

to~ at the maximum load ranging from 0.34 for Test No. 2, to 0.41 

for Test No. 12. Because the P - ~ plots for lateral deflection did 

not generally follow this pattern exactly, values of y
0 

or e cal-

culated for any test vary according to the values of P used in 

calculating them. 

For the 13 tests, the values of y
0 

corresponding to 

maximum load ranged from 0.090 to 0.418 inch (2.13 to 10.6 mm) and 

averaged 0.264 inch (6.7 mm). The values of e ranged from 0.072 to 

0.339 inch (1.8 to 8.6 mm) and averaged 0.214 inch (5.4 mm). Thus, 

either a small initial out-of-straightness or a small eccentricity 
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would cause the observed lateral deflection at maximum load_ Further­

more, a combination of even smaller values of y
0 

and e would cause 

these lateral deflections. 

Mode of Failure. All wall-compression tests terminated 

by a sudden unloading, with little or no apparent yielding before 

failure. In the specimens with sheathing on one side only, the 

unsupported stud flange moved parallel to the wall as the result of 

twisting of the cross section at failure. At failure, local buckles 

usually occurred in the flange near midheight in two or three of 

the studs in the specimen, as illustrated in Figure 8. Since tests 

and theoretical calculations showed that local buckling occurs in 

the flange only after yielding, it is probable that these local 

flange buckles did not initiate failure, but rather occurred after 

failure was initiated by column or lateral-flexural buckling. 

Both wall-compression-test specimens with 20-gage solid 

studs formed local buckles at the bottoms of the studs. Those 

local buckles can be attributed to the fact that the flanges of 

these particular studs had been chamfered to fit into a narrow 

track. It appears that the local buckles at the bottoms of 

the studs did not limit the loading sustained by the specimen 

with no interior sheathing (Test No. 13) because it developed 

a flange buckle at a location more than 2 feet (0.6 m) above the 

base. However, the local buckles at the base apparently did limit 

the load capacity of the specimen with sheathing on both sides 
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(Test No. 10) since no other cause of the unloading was apparent. 

Therefore, Test No. 10 was considered invalid. 

Maximum Loads. The maximum loads of the wall-compression 

tests are listed in Table I and compared with calculated ultimate 

loads based on the AISI specification.
1

) Specifically, the ultimate 

load for the specimen was calculated by multiplying the allowable 

strong-axis column-buckling load (AISI Section 3.6.l.l)l) for a 

single solid stud by the AISI factor of safety of 1.92
2

) and by 3 

to account for the number of studs in the specimens. Two sets of 

comparisons giving ratios of experimental data to corresponding 

theoretical data are made. In the first comparison, the theoretical 

force is based on the measured thicknesses and yield points of the 

tested studs. In the second comparison, the theoretical force is 

based on the nominal thicknesses (for the given gages) and the 40-

ksi (276 MN/m 2 ) specified minimum yield point of A446, Grade C 

galvanized steel. In both sets of comparisons, the sheathing is 

neglected except as it provides lateral support. 

In addition to ultimate loads based on axial load alone, 

ultimate loads based on bending in combination with axial load were 

calculated and are listed in Table I. The bending moment used in 

these calculations was equal to the maximum experimental axial load 

times the apparent eccentricity computed as explained above in the 

section on Deflections. With bending present, the axial-load 

capacity is reduced by the factor 1 • 2 ) 
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where fb is the bending stress and Fy is the yield point_ Con-

sequently, this factor was used to calculate theoretical ultimate 

axial loads that included the effect of unintentional eccentricities 

in the tests. In determining the factor, fa and fb were computed 

from the maximum test load, and F was the actual yield point of 
y 

the steel. 

In comparison with the theoretical loads based on the 

nominal thicknesses and the specified yield point, the behavior of 

the wall-compression specimens with sheathing attached on both 

sides can be summarized as follows: 

Range of Ratios 
Type of Stud Test Load 7 Theoretical Load 

Slit 0.84 to 1.13 

Solid 1.10 to 1.17* 

In comparison with the theoretical loads based on the measured 

thicknesses and yield points, the performance of the specimens with 

sheathing attached on both sides can be summarized as follows: 

* Excluding invalid Test No. 10 
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Type 
of 

Stud 

Slit 

Solid 
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Range of Ratios 
Test Load Ratio Including 

• Theoretical Load Bending 

0.72 to 0.99 0.90 minimum 

0.89 to 0.97 1.25 minimum* 

The solid studs, which conform to the AISI specification,
1

) should 

attain ratios (not including bending) exceeding 0.87 (that is, 1.0 

~ 1.15), since the AISI allowable stresses in axial compression 

incorporate a safety factor (1.92) about 15 percent larger than the 

basic safety factor of 1.67 used in most parts of the specification 

to account "for the greater sensitivity of compression members to 

accidental imperfections of shape or accidental load eccentricities, 

when compared to tension members or beams." 2 ) This ratio (0.87) was 

exceeded in all valid solid-steel tests. As expected, the ratios 

for the slit studs did not always exceed 0.87. 

For the two sets of tests on solid and slit studs with 

sheathing on one side only (Tests 3 and 4, and 12 and 13), the 

ratios of test to theoretical load (computed by using either actual 

or nominal thicknesses and yield points) ranged from 0.60 to 0.87, 

and were well below the ratios for studs with sheathing on both 

sides. 

Using actual thicknesses and yield points, comparisons 

between slit and solid studs were obtained by dividing the ratio 

(not including bending) for a slit stud by the ratio for a similar 

* Excluding invalid Test No. 10. 
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(same gage and same sheathing) solid stud. 

from 0.77 to 0.97. 

Lateral-Loading Tests 

133 

The results ranged 

Deflections. A typical load-deflection curve is given in 

Figure 9 for a lateral-loading test. For the solid studs with 

sheathing on both sides, the experimental curves were close to and 

slightly to the right of the theoretical curves (neglecting sheathing) , 

indicating that the sheathings did not contribute significantly to 

the bending stiffness of the panels. For all the other lateral­

loading tests, the experimental deflections were somewhat greater 

than theoretically predicted for solid studs (neglecting the sheathings). 

For the specimens with sheathing on only one side, this may be 

attributed to twisting of the studs during the test, Figure 10, 

which causes a decrease in the effective depths of the studs. For 

the slit-stud specimens with sheathing on both sides, the greater 

deflections can be attributed to a decrease in stiffness caused by 

the slits. 

Modes of Failure. In most tests, failure was gradual, 

with the central portions of the studs tending to rotate, as indicated 

.n Figure 10. This can be attributed to the combined effect of 

{1) twisting which occurs because the lateral loading is not being 

applied to the stud through the shear center, and (2) the tendency 

for the loaded sheathing to deform grossly, causing the attached 

flange of the stud to rotate about the stud web, which acts as a 



134 THIRD SPECIALTY CONFERENCE 

fulcrum. These effects are more pronounced if the strength or 

stiffness of the loaded (exterior) sheathing is less or if there is 

no interior sheathing. The specimens generally unloaded immediately 

after the formation of a crack in the interior gypsum-board sheathing 

at the location of a stud, or when fiberboard exterior sheathing 

cracked or the stud "knifed through" the fiberboard. 

Maximum Loads. The maximum lateral loads are listed in 

Table II and are compared with the lateral loading that 

theoretically would cause the start of yielding of solid studs. As 

in Table I, two sets of comparisons with the experimental data are 

made: (1) with the theoretical force based on measured thicknesses 

and yield points and (2) with the theoretical force based on the 

nominal thicknesses and the 40-ksi (276 MN/m 2 ) specified minimum 

yield point of A446, Grade C galvanized steel. In both sets of 

comparisons, the sheathing is neglected, except as it provides in-

plane support. 

In comparison with the theoretical loadings based on the 

nominal thicknesses and the specified yield point, the behavior of 

the specimens with sheathing attached on both sides can be summarized 

as follows: 

Range of Ratios 
Type of Stud Test Load 7 Theoretical Load 

Slit 0.95 to 1.35 

Solid 1.21 to 1.47 
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In comparison with the theoretical loadings based on the measured 

thicknesses and yield points, the performance of the specimens with 

sheathing attached on both sides can be summarized as follows: 

Type of 
Stud 

Slit 

Solid 

Range of Ratios 
Test Load ~ Theoretical Load 

0. 78 to l. 30 

0.86 to 1.57 

The high ratios, 1.30 and 1.57, correspond to specimens in which 

Panel 15 sheathing was connected to the studs by screws at a spacing 

considerably less than that used for the other specimens with 

Panel 15 sheathing. The solid studs, which conform to the AISI 

. f . . l ) ld b d . . f b l spec~ ~cat~on, wou e expecte to atta~n rat~os o a out . 

The only solid-stud ratio less than l (0.86 for the 20-gage stud, 

Test No. 26), corresponded to a steel with a 53-ksi (365 MN/m 2 ) 

yield point, which is considerably greater than the 40-ksi minimum 

yield point specified for the studs. This lower ratio is probably 

explained by the rupture of the exterior sheathing that occurred 

when the net upward pressure was only 79.7 psf (3816 N/m 2 ), which 

was 13.3 psf (637 N/m
2

) less than the ultimate load. Apparently, 

the premature rupture of the exterior sheathing resulted from 

forces caused by the tendency of the studs to twist. Subsequently, 

the attached compression flanges of the studs were not sufficiently 

restrained against bending parallel to the wall. This caused 

premature failure of the studs at a loading corresponding to a 
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computed stress of about 46 ksi (317 MN/m
2

) rather than to the 53-

ksi yield point. 

As expected, the ratios of test to theoretical load for 

the slit studs did not always exceed 1. The load ratios for solid 

and slit studs with sheathing on one side only were generally well 

below 1. Using actual thicknesses and yield points, comparisons 

between slit and solid studs were obtained by dividing the ratio 

for a slit stud by the ratio for a similar (same gage and same 

sheathing) solid stud. The results ranged from 0.83 to 1.15. 

Single-Stud Compression Tests 

Modes of Failure. All the 96-inch-long single-stud 

specimens unloaded after bowing in the direction of weak-axis 

bending. Therefore, the failures of these specimens would be 

generally classified as weak-axis column buckling. In a few specimens, 

a slight twist was noticeable, suggesting some torsional-flexural 

buckling interacting with the weak-axis buckling. However, there 

was no consistent correlation between incidence of twisting and 

type of stud. 

The 20-inch-long (0.51 m) single-stud specimens unloaded 

after forming local buckles. The local buckles of the solid studs 

occurred suddenly and were confined to short lengths, Figure 11, 

but the local buckles of the slit studs occurred gradually and 
) 

extended over most of the specimen lengths, Figure 12. / 
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Maximum Loads. The maximum axial loads for the single­

stud specimens are listed in Table III and compared with calculated 

ultimate loads based on the AISI specifications.!) Specifically, 

the ultimate load was the least load calculated by multiplying 

either the weak-axis column-buckling load (AISI Section 3.6.1.1) 1 ) 

or the torsional-flexural buckling load (AISI Section 3.6.1.2) 1 ) 

for a solid stud by the AISI factor of safety of 1.92. 2 ) These 

loads were nearly the same. For example, for the 96-inch-long stud 

the theoretical weak-axis column buckling load, based on an effective 

length of 98 inches, was 3.54 kips (15.7 kN) for the slit studs and 

3.31 kips (14.7 kN) for the solid studs, whereas the corresponding 

torsional-flexural buckling loads were 3.28 kips (14.6 kN) and 

3.10 kips (13.8 kN). For the 96-inch-long studs, the weak-axis 

column buckling load was the Euler buckling load, Pe. 

Comparisons are made on the basis of both measured and 

nominal thicknesses and yield points. There was not much difference 

between the two sets of comparisons. The only ultimate loads on the 

96-inch-long studs that were less than the theoretical allowable 

loads specified by AISI were those of one slit stud, with a ratio 

of test to theoretical maximum load of 0.96. The ultimate loads on 

the three long slit studs were less than the Euler buckling load, 

with a ratio of test to Euler buckling load ranging from 0.89 to 

0.99. As expected, the ultimate loads on all the three long solid 

studs exceeded the Euler buckling load. 
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The ultimate loads on the 20-inch-long studs, with 10-

inch (0.25 m) effective lengths, were generally less than the 

theoretical loads. The least ratio of the test load to the theoreti-

cal load based on measured thicknesses and yield points was 0.77 

for slit studs and 0.91 for solid studs. 

Design Method for Slit Studs 

In the wall-compression tests of slit-stud specimens with 

sheathing on both sides, the ratio of test load to theoretical 

solid-stud load (based on measured thicknesses and yield points) 

exceeded 0.80 if the effect of the unintentional eccentricity was 

included in the theoretical load, and was never less than 0.72 if 

the effect of the eccentricity was not included. In the double-

sheathing lateral-loading tests with slit studs, the ratio of test 

load to theoretical solid-stud load ranged from 0.78 to 1.30. In 

all the compression tests of the 96-inch-long single slit studs, 

the ratio of test load to theoretical load exceeded 0.80, and the 

ratio of test load to Euler buckling load, Pe, was 0.89 or greater. 

Thus, the test results indicate that the design of slit 

studs for axial load, strong-axis bending, or a combination of both 

can safely be based on allowable stresses equal to 80 percent of 

the AISI allowable stresses for a solid stud of the same dimensions 

and steel, with the Euler buckling stress, Fe, also multiplied by 

80 percent in the AISI interacting equations. This approach, of 

course, does not apply to studs supported by sheathing on one 
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flange only since the AISI allowable stresses do not apply to this 

case, which is discussed later. 

Lateral Support 

Double Sheathing. The results of both the wall-

compression and lateral-loading tests on specimens with sheathing 

on both sides of solid or slit studs suggest that the type of 

sheathing and spacing of connectors has some effect on ultimate 

strength. For example, the ultimate bending strength of specimens 

with Panel 15 attached to the exterior face by closely spaced 

screws was significantly greater than the ultimate strength of 

specimens with wider spacings or screws or with other sheathing 

materials. However, ther~ are not enough data to define quantita-

tively the effect of various combinations of type of sheathing and 

type and spacing of connectors. 

In both the wall-compression and lateral-loading tests, 

all the solid-stud specimens reached their theoretical ultimate 

loads except the specimen in lateral-loading test No. 26. As 

discussed previously, failure of this specimen was attributed to 

premature failure of the exterior fiberboard sheathing after attain-

2 
ment of the specified yield point of 40 ksi (276 MN/m ) but before 

attainment of the actual yield point of 53 ksi (365 MN/m
2
). Thus, 

all the tested combinations of sheathing and connector spacing 

provided full lateral support for solid-stud walls if the yield 

strength of the stud material does exceed about 45 ksi (310 MN/m2 ). 
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In both the wall-compression and lateral-loading tests, 

many of the slit-stud specimens failed at loads significantly below 

the theoretical ultimate loads. Although most of the reduction 

probably resulted from the web slits, it is possible that sheathing 

failures may have contributed to the reduction in some tests, as 

discussed earlier. If there are any such effects, however, they 

are included in the multiplication factor of 80 percent for slit 

studs that was suggested previously. consequently, if the multipli­

cation factor is applied, all tested combinations of type of sheathing 

and connector spacing can be considered to provide full lateral 

support for slit-stud walls. 

Single Sheathing Without Horizontal Strapping or Bracing. 

The ratios of the load sustained by a specimen with sheathing on 

only one side to the load sustained by a similar specimen with 

sheathing on both sides ranged from 0.71 to 0.87 for wall­

compression tests and from 0.55 to 0.91 for lateral-loading tests. 

The lowest ratios, 0.71 and 0.55, were for the solid-stud comparisons; 

the lowest ratios for the slit-stud comparisons were 0.80 for the 

wall-compression tests and 0.67 for the lateral-loading tests. The 

loads for specimens with sheathing on one side only ranged from 

about 2.3 to 2.7 times the theoretical loads for studs with no 

lateral support. The loads for the specimens with sheathing on one 

side only were probably affected by the type of sheathing but there 

were not enough data to define the effect quantitatively. 
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Therefore, it is recommended that the design allowable 

stresses for either slit or solid studs with full lateral support 

be multiplied by a factor to obtain the corresponding design allowable 

stresses for studs with sheathing on only one side. On the basis 

of the available test results, it is suggested that the factor be 

0.70 for allowable axial stress and 0.50 for allowable bending 

stress when the bending stress is tension in the unsupported flange. 

If the bending stress is compression in the unsupported flange, the 

allowable bending stress can be conservatively determined by assuming 

a stud with no lateral support. Since these multiplication factors 

probably depend considerably on the dimensions (unsupported length, 

etc.) of the specimens, they should not be used in applications 

where the dimensions are considerably different from those in 

the tests. 

Single Sheathing With Horizontal Strapping or Bracing. 

As discussed in Reference 3, the effect of supports by horizontal 

strapping or bracing is to reduce the unsupported length of a stud 

in the weak-axis direction to the vertical distance between these 

supports or the distance between a support and the top or bottom of 

the stud. Therefore, where sheathing is attached to one side of 

the studs and horizontal strapping or bracing (but no sheathing) is 

attached to the other side, the allowable stresses may be determined 

by either of two methods: (1) calculation based on a stud with 

sheathing attached to one side and no lateral support on the other 
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side or (2) calculation based on a stud unsupported between straps 

or a strap and an end of the stud. The larger of these two allowable 

loads can be safely used in designing studs for either axial compres­

sion, bending, or a combination of both. 

Conclusions 

The results of the tests showed that walls with sli~ 

Super-C studs can be designed by using an allowable axial­

compression or bending stress in the slit studs that is 0.80 times 

the AISil) allowable stress for a similar solid stud. Designs 

governed by combined bending and axial compression may be computed 

for the slit Super-C stud by using these reduced allowable stresses 

and also the Euler buckling stress, F~, likewise multiplied by 

0.80, in the AISI interaction equations. 

All the tested sheathing materials (fiberboard, gypsum 

board, plywood, and Panel 15) and connection methods provide full 

lateral support for solid or slit Super-C studs loaded in axial 

compression or bending if the sheathing is attached to both flanges. 

If the sheathing is attached to only one flange (the compression 

flange for bending), the axial-compression strength is reduced by 

30 percent and the bending strength by 50 percent compared with the 

corresponding strengths for a stud with full lateral support. In 

bending applications, if the sheathing is attached only to the 

tension flange, the stud should be designed as if it has no lateral 

supports. 



STEEL-STUD WALLS 143 

References 

1. "Specification for the Design of Cold-Formed Steel 
Structural Members, Cold-Formed Steel Design Manual-Part I," 
1968 Edition, American Iron and Steel Institute, New York. 

2. "Commentary on the 1968 Edition of the Specification for the 
Design of Cold-Formed Steel Structural Members," American Iron 
and Steel Institute, New York, 1970. 

It is understood that the material in this paper is intended for 
general information only and shou~d not be used in relation to any 
specific application without independent exa~ination and verifica­
tion of its applicability and suitability by professionally 
qualified personnel. Those making use thereof or relying thereon 
assume all risk and liability arising from such use or reliance. 



Table I 

.j:o 
Wa.ll-CCGlpression Tests .j:o 

Theoretical 
Load+_. 

!:. Ptest= Based On Theoretical . 
L- Rxx Maxi- Measured Load++ 

Height Slender- F)'"" JIWI Thickness Based On 
of ness Yield Total and Yield Nominal 

Spacin9 of speci- Ratio Point Load Point Thickness+++ -l 
Screw Fasteners, Uncoated liEn for of Q ~ on latio and Yield ::t 

Sheathing* inches Type Type Thickness c-c Strong- Stud AISI Speci- Includ- Point ...... 
Test Exterior Interior Exterior Interior of of of stUd, Pins, ~is Steel, Area men, Ptheo, ~ ing Ptheo, Ptest 

::<) 

u 
~ .1!2:.. --...illL ~~~stud ~ ~ ~ Bucklinq ~ !:..!.£!2r ~ kips ~ Bending ~ Ptheo 

Vl 
'"0 

18 1 LG Fiberbd Gyp. Bd 6 16 Slit Wide 0.052 92,5 67.0 52 0.826 29.7 39.7 o. 75 0,90 31.1 0,95 trl 
2 . . . . 6 16 solid " 0,050 92.5 66.9 47 0,829 34.1 35,3 0,97 1. 46 31.1 1,10 

("') 

:; 
LG Fiberbd (None) 6 - Slit Wide 0. 052 92.5 67.0 52 0.826 23.9 39.7 0.60 0,64 31,1 o. 77 r 

-l 
6 - Solid . 0,050 92,5 66.9 47 0,829 27,2 35,3 o. 77 0.92 31.1 0,87 ~ 

("') 
Plywood Gyp, Bd JQU JQU Slit Narrow 0.049 93.0 67,3 49 0,819 30.0 35,5 0.85 31.1 0.96 0 

JQU 30** . . 0.049 93,0 67.3 49 0.819 31.0 35,5 0,87 31.1 1,00 z 
)QU 30** . . 0,049 93,0 67.3 49 0,819 33.0 35,5 0.93 31.1 1.06 'Tj 

trl 
::<) 

Gyp. Bd Gyp. Bd 12* ... 8,12* ... Slit Narrow 0.049 93.0 67.3 49 0,819 35,0 35.5 0,99 31.1 1.13 trl z 
20 9 LG Fiberbd Gyp, Bd 6 16 Slit Narrow 0.039 93.0 67.1 46 0. 775 18.7 25.8 o. 72 0.94 22.3 0.84 ("') 

10 . . .. .. 6 16 SOlid " 0.040 93.0 67.1 53 0. 757 21,3++29.2 o. 73 0.88 22.3 0,96 trl 
++ 

11 . . . n 6 16 . Wide 0.040 92.5 66.7 53 o. 757 26.1 29.2 0.89 1. 25 22.3 1,17 

12 LG Fiberbd (None) 6 Slit Harrow 0.039 93.0 67.1 46 o. 775 16.1 25.8 0.62 o. 70 22.3 o. 72 

13 . . 6 - solid .. 0.040 93,0 67.1 53 o. 757 18.6 29.2 0,64 0.66 22.3 0.83 

{Continuc;:d) 



Table 1 {Continued) 

' l/2-Inch-thlcJt: low-grade (LG} fiberboard, 1/2-inch-thick gypsUlli wallboard, or 1/2-inch-thick 11.-D plywood. 

•• Adhesive used for these connections only. 

••• 8 Inches around the periphery, 12 inches within the interior of the sheet. 

+ Square-ended studs in wide track; in narrow track, €nds of flanges of studs were beveled to fit the contour of 
of the bend fillets of the track. 

++ Neglecting the sheathing, 

+++For 18- and 20-gage studs, respectively, steel thicknesses of 0.0496 inch and 0.0376 inch, corresponding to 

galvanized-sheet thicknesses of 0.0516 inch and 0.0396 incb. 

++++ Invalid test; in this test only, failure was confined to local buckling of the stud at the track. In all other 
tests, failure included buckling away from the track. 

conversion Factors 

1 inch = 25.4 m 
1 ksi = 6.89 MPa 

1 kip = 4. 4 5 kN 

Vl 
-l 
tTl 
tTl 
t;"' 
Vl 
-l c 
t:l 
~ 
> 
l' 
l' 
Vl 

-
""'" Vl 



Sheathing:'* 
Teat Exterior Interior 

~ .!!!;!.,_ Side ~ 

18 14 HG Fiberbd Gyp. Bd 

15 . . . . 
16 NC Fiberbd !lone 

17 . . . 
18 LG Fiberbd !lone 

19 . . . 
20 Panel 15 Gyp. Bd 

21 . . . . 
22 Panel 15 Gyp. Bd 

23 . . . . 
24 . . . . 

20 25 HG Fiberbd Gyp, Bd 

26 . . . .. 

27 LG Fiberbd None 

28 . . .. 

Spacing ot 
Screw F4steners, 

.inches 

Exterior Interior 

~~ 

3, 6*• 

J, 6** 

3, 6*• 

3, 6•* 

3, 6** 
3, 6•• 

6, 12 
6, 12 

15, 30*'** 
15, )QUt 

15, )QHt 

6 
6 

6 

• 

16 

16 

16 
16 

30'**'* 
15'*** 

2*** 

16 

16 

Type 
o! 

Stud 

Slit 

Solid 

Slit 

Solid 

Slit 

Solid 

Slit 

Solid 

Slit . . 
Slit 
Solid 

Slit 

Solid 

Table II 

Lateral-Loading Tests 

Ptest = 
Yield Haxi.mwn 

Uncoated Point of Net Lateral 

Thickness Stud Pressure 
of Stud, Steel, on Specimen, 

~ ~ psf 

0,049 42 116,0 

0.049 38 126.4 

0.049 42 105,6 

o. 049 38 108.7 

0.049 42 51.7 

a. 049 38 55.6 

0.049 42 135 .o 
0.049 38 141.0 

0.049 49 94.4 

0.049 49 105 .o 
c. 049 49 104.8 

0. 039 46 75.1 

0.040 53 93 .o 

0.039 46 50.1 

0.040 53 51.4 

Theoretical Pressuret­

Theoretical Pressure• Initiating .tnitiatin9 Yielding of 

Yieldinq o! Solid Studs with Solid Studs With the Nominal 
the Measured Thicknesl!ll and 

rield Point 

Thicknes15++ and a Yield Point 

o! 40 ksi 

Ptheor !..tu.t.. Ptheor ~ 
~ ~ ~ ~ 

103,6 1.12 99,8 1.16 

93.7 1,35 99.8 1.27 

103,6 1.02 99,8 1.06 
93.7 1.16 99.8 1.09 

103.6 o. 50 99.8 o. 52 
93.7 o. 59 99.8 o. 56 

103.6 1. 30 99.8 1. 35 
93.7 1. 57 99.8 1.47 

120.8 o. 78 99.8 o. 95 

120.8 0.87 99.8 1.05 
120,8 o. 87 99.8 1. 05 

91.6 0,82 76,9 o. 98 

107.7 0.86 76.9 1.21 

91.6 o. 55 76.9 0.65 

107.7 0.48 76.9 0. 67 

• l/2-Inch-thick nail-grade (NG) or low-grade (LG) fiberboard, 1/2-inch-thick gypsum wallboard, or Panel 15, which is 0.3-inch-thick plywood 
exterior and 2-mil interior aluminum facing sheets. 

with 10-mil 

u Where two nllllbers are shown, the first is the spacing around the periphery and the second is the spacing with_in the interior of the sheet. 

••• Adhesive used for these connections only. 

+ Reqlectinq the sheathing; the specimen spClnS 86 inches c-c roller bearings. 
•• For 18- and 20-gage studs, respectively, stt>el thicknesses of 0,0496 inch and 0.0376 inch, corresponding to galvanized-sheet thicknesses of 0.0516 ind, 

and o. 0396 inch. 

Conversion Factors 

1 inch • 25.4 .-. 
1 mil • 0.025 -
1 ksi • 6. 89 HI' a 
1 p•f ~ 0,048 kfa 

-4 
0' 

-l 
::r: 
;;o 
0 
Vl 
'1;l 
tTl 
0 
)> 
r 
-l 
-< 
(') 

0 
z 
"1'1 
tTl 
;;o 
tTl 
z 
(') 
tTl 



Table III 

Sir.al~-stud Compression Tests 

L 
Pe = Theoretical 

'f"yy = Euler Theoretical Load Based 

Yield Maximum Weak-Axis Ptest = Load Based on Nominal 

Point Slenderness Buckling Ma.Xi.mlll!\ on Measured Thicknessu 

Uncoated of Q = Effective RAtio Load Based Total Thickness and and Yield 

Type Thickness Stud AISI Unsupported for Weak- on Measured Load on Yield Point Point 

Ncminal of of Stud, Steel, Area Lengt.h, Length, Axis Thickness, Specimen, Pt.heo, Ptest Ptheo, Ptest 

~ Stud ~ ~ Factor inches inches . Buckling kips ~ ~ "'PtheO ~Ptheo 

18 Slit 0,049 49 0,819 20 10• 18 - ll, 2 13.78 0,81 ll. 78 0.95 
10,6 o. 77 0,90 
ll. 7 0,85 0.99 
ll, 3 o. 82 0.96 
11.6 o. 84 0.98 
10,8 o. 78 0.92 

Solid o. 049 38 0.848 20 10° 18 - ll,O 11.10 0.99 ll. 78 0.93 
10.6 o. 95 0.90 
11.5 l. 04 0.98 
10.1 0.91 0.86 
10.2 0,92 0,87 

ll.l 1.00 0.94 

Slit 0,052 52 0.826 96 98+ 174 3, 54 J .15 3, 28 o. 96 ].16 1,00 
]. 47 l. 06 l.lO 
J. 52 1.07 l,ll 

Solid 0,049 49 0,819 96 98+ 11' ], ll J .61 3.10 1.17 3.16 1.15 

3.~ 5 l.ll l. 09 

J. 60 1,16 1.14 

Fer these specimens only, the effective t:nsupported le:cH, is r-n~-httl f tt.e specimen lenoth, 20 inch~~, becausf: tt-.e er.d-:; o~ eact-. 
!ipecimer. ..-ere fixe~ ~qainst rotation during the test. 

For lB•gage studs, steel thickness of 0.0496 inch, correspond1ng to galvanized-sheet thickness 
of 0,0516 inch. 

+ Cistance between bearing lines of top and bo~tom half pins. 

Conversion factors 
1 inch = 2S.4 

l ksi = 6.89 KPa 
l kip = 4,45 llN 

Vl 
-1 
tT1 
tT1 
\ 
Vl 
-1 
c: 
0 
~ 
;J> 
r 
r 
Vl 

~ 
-....1 
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Wall-Compression Test Specimen 
With Sheathing on One Side Only 

Figure 3 . 
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Lateral-Loading Test Specimen 
With Sheathing on One Side Only 

Figure 5 . 
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Setup for Single-Stud 
Compression Tests 

153 

Figure 6. 
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Failure of Wall Compression Test No. 4. 

Figure 8 . 
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Twisting of Studs in Lateral-Load Test 
of Specimen With Sheathing on One Side Only 

Figure 10. 
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Short Length Local Buckl es in 
20-Inch-Long (0.51 m) Solid Studs 

Figure 11. 
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