May 6th, 12:00 AM

Ground heave due to pile driving

J.P. Dugan
D.L. Freed

Follow this and additional works at: http://scholarsmine.mst.edu/icchge

Recommended Citation
http://scholarsmine.mst.edu/icchge/1icchge/1icchge-theme1/28

This Article - Conference proceedings is brought to you for free and open access by the Geosciences and Geological and Petroleum Engineering at Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
SYNOPSIS

The factors which influence ground heave due to pile driving outside the construction site are discussed. Elevation survey data are presented for nine case studies in the Boston area where the subsoil conditions consist of an insensitive clay deposit in the range of 60 to 110 feet thick. Curves of heave vs. normalized distance exhibit a trend of increasing heave with increased volumetric displacement ratio. Patterns of ground heave typically occur as radially shaped contours decreasing in magnitude away from pile driving. Building and ground movements observed several years after completion of pile driving indicate that the heave is temporary, and is followed by a net settlement. Eight factors which influence heave due to pile driving are briefly discussed. Pile driving can be designed to minimize or prevent heave by properly planning the methods and sequence of pile installation.

INTRODUCTION

Engineers have recognized that the soil displaced during pile driving causes ground heave. Hagerty and Peck (1971) conclude that heave effects are most pronounced within saturated insensitive clay soils. Based on the results of several case studies, they further state that the volume of surface heave outside the area of pile foundations is equivalent to the volume of approximately 50 percent of the displaced soil. Depending on the proximity of adjacent buildings or surface features, the heave may cause distress and possibly structural damage. It therefore becomes important to estimate the magnitude and patterns of heave outside the construction site in order to preserve the integrity of the abutting features.

Previous studies, including those by Cummings et al. (1950) and numerous discussion papers, Lo and Stermac (1965), Soderberg (1967), D'Apollonia and Lambe (1971), and Vesic (1972), have attempted to explain the factors which contribute to heave. Several of these papers present field data which substantiate that heave effects are related to build-up of excess pore pressure, volume of displaced soil, sequence of driving, and clay sensitivity.

The Boston area presents an ideal setting for investigating magnitudes and patterns of heave due to pile driving. This study area is characterized by a thick deposit of insensitive stiff to soft clay; "Boston Blue clay". This clay underlies much of the city, where many of the modern medium to high rise buildings are founded on deep pile foundations. In many instances, the new buildings are located next to older turn-of-the-century buildings which are typically supported by short wood piles or caissons bearing within the top of the clay.

DATA

The case studies referenced in this paper were all located within Boston or Cambridge, Massachusetts. These projects fall within the Boston Basin, which is dominated by a deposit of marine clay ranging from 60 to 110 feet thick. A typical soil profile at one of the case study areas is shown in Figure 1. For some of the other case studies, the organic soils and/or outwash deposits were absent from the profile and the thickness of deposits varied.

Boston Blue Clay is an insensitive clay deposited from glacial melt in quiet brackish waters. The upper part of the clay is over-consolidated, due primarily to dessication, while the lower portions are normally consolidated. Ladd and Luscher (1965) and Casagrande (1958) and others have documented the typical properties of the marine clay.

Table I summarizes information for each case study. The projects, in general, are buildings ranging from 5 to 40 stories. Foundation pile types consisted of 14-inch or 16-inch square precast prestressed concrete or 12-inch to 14-inch diameter concrete filled steel
adjacent buildings surveyed were typically to 9 stories in height. Surface points monitored included streets, retaining walls, depressed highway ramps, and utility lines.

Pile area ratio and volumetric displacement ratio are used to quantify pile data. Pile area ratio, expressed as a percent, represents the ratio of the volume of clay displaced during pile driving to the total volume of clay underlying the building foundation plan area. In calculating volumetric displacement ratio, it is assumed that the slurry filling the preaugered hole is displaced into the ground as the pile is installed. This assumption is not generally valid for most, if not, all cases. However it is not possible to quantify the magnitude of this displacement.

Table I - Summary of Case Studies

<table>
<thead>
<tr>
<th>CASE NO. AND SYMBOL</th>
<th>TYPE OF PROJECT (PLAN AREA, FT²)</th>
<th>PILE TYPE (AVERAGE LENGTH, FT)</th>
<th>DIAMETER OF AUGER (IN.)</th>
<th>EXCAVATION DEPTH (FT)</th>
<th>PILE AREA RATIO (%)</th>
<th>VOLUMETRIC DISPLACEMENT RATIO (%)</th>
<th>ADJACENT STRUCTURE</th>
<th>FOUNDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 O</td>
<td>SUBWAY (Linear Structure 130 ft wide)</td>
<td>14 in PPC (105)</td>
<td>17</td>
<td>28</td>
<td>1.4</td>
<td>0.0</td>
<td>Multistory Bldg.</td>
<td>Caisson</td>
</tr>
<tr>
<td>2 △</td>
<td>LOW-RISE BUILDING (28,000)</td>
<td>16 in PPC (115)</td>
<td>None</td>
<td>10</td>
<td>1.2</td>
<td>1.2</td>
<td>3-Story Building</td>
<td>Wood Piles</td>
</tr>
<tr>
<td>3 ▼</td>
<td>HIGH-RISE BUILDING (22,000)</td>
<td>14 in and 16 in PPC (115)</td>
<td>16 (18 in PPC)</td>
<td>18 - 16 (16 in PPC)</td>
<td>21</td>
<td>5.6</td>
<td>0.9</td>
<td>6-Story Building</td>
</tr>
<tr>
<td>4 □</td>
<td>HIGH-RISE BUILDING (18,000)</td>
<td>14 in PPC (105)</td>
<td>17</td>
<td>12 to 22</td>
<td>5.8</td>
<td>0.4</td>
<td>Bridge Abutment</td>
<td>Wood Piles</td>
</tr>
<tr>
<td>5 X</td>
<td>LOW-RISE BUILDING (35,000)</td>
<td>12.75 in CFP (105)</td>
<td>13</td>
<td>6</td>
<td>1.4</td>
<td>0.4</td>
<td>6-Story Building</td>
<td>Wood Piles</td>
</tr>
<tr>
<td>6 ○</td>
<td>LOW-RISE BUILDING (15,000)</td>
<td>12.75 in CFP (105)</td>
<td>13.4</td>
<td>5</td>
<td>1.3</td>
<td>0.3</td>
<td>5-Story Building</td>
<td>Caisson</td>
</tr>
<tr>
<td>7 ○</td>
<td>MEDIUM-RISE BUILDING (17,000)</td>
<td>14 in CFP (105)</td>
<td>15</td>
<td>10</td>
<td>2.3</td>
<td>1.1</td>
<td>Low-Rise Building</td>
<td>Mat on Sand</td>
</tr>
<tr>
<td>8 +</td>
<td>MEDIUM-RISE BUILDING (12,000)</td>
<td>14 in PPC (130)</td>
<td>17</td>
<td>10</td>
<td>1.9</td>
<td>0.3</td>
<td>9-Story Building</td>
<td>Wood Piles</td>
</tr>
<tr>
<td>9 X</td>
<td>LOW-RISE PARKING GARAGE (40,000)</td>
<td>14 in PPC (100)</td>
<td>14</td>
<td>0</td>
<td>0.7</td>
<td>0.4</td>
<td>3-to-4-Story Building</td>
<td>Wood Piles</td>
</tr>
</tbody>
</table>

PPC = SQUARE PRECAST-PRESTRESSED CONCRETE; CFP = CONCRETE FILLED STEEL PIPE

pipe, of 70 to 175 ton design capacity. Pile lengths varied from 90 to 160 feet. Cavitations, as much as 25 feet below ground surface, were made at most of the study are prior to the start of pile driving. In a majority of the case studies, pile driving was accompanied by preaugering through some or all of the clay deposit.

Figure 1. Typical Soil Profile

<table>
<thead>
<tr>
<th>SOIL TYPE</th>
<th>UNDRAINED SHEAR STRENGTH (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill</td>
<td>800 - 2000 (UPPER PORTION)</td>
</tr>
<tr>
<td>Organic Silt</td>
<td>N-VALUE = 30 - 50</td>
</tr>
<tr>
<td>Sand</td>
<td>400 - 800 (LOWER PORTION)</td>
</tr>
<tr>
<td>Marine Clay</td>
<td>LIQUID LIMIT = 40-55%</td>
</tr>
<tr>
<td>Glacial Till</td>
<td>PLASTICITY INDEX = 15 - 30%</td>
</tr>
<tr>
<td>Bedrock</td>
<td>UNDRAINED SHEAR STRENGTH (psf)</td>
</tr>
</tbody>
</table>

Note: N-VALUE represents number of blows per foot required to drive a 1-3/8 inch diameter split-spoon using a 140 pound hammer free-falling for 30 inches.
MAGNITUDE OF HEAVE

Data were plotted to determine relationships between the maximum heave and the major factors of distance and plan position relative to the pile driving, clay depth, and volumetric displacement ratio. Data for surface points were plotted separately from points on buildings.

Patterns of heave adjacent to pile driving are proportional to the depth of the bottom of the clay layer. To account for variations in clay depth for the cases analyzed, heave was plotted against a normalized distance. A normalized distance was calculated by dividing the distance between the reference point and the pile driving by the average depth to the bottom of clay.

The magnitude of heave along a line parallel to the site is related to the plan position with respect to the central portion of the pile driving. Data were plotted separately according to zones A, B and C as defined in Figure 2.

Figure 3 is an example of heave vs. normalized distance plots. This figure applies to points within zone A on buildings. There is a general trend of increasing heave with increasing volumetric displacement ratio. However, there is substantial variation such that a family of curves for varying volumetric displacement ratios could not be developed. A variety of factors which affect heave response are noted in the following section.

The heave vs. normalized distance plots apply to the following conditions, which are common to the case histories studied:

1. The typical Boston area soil/rock profile.
2. Volumetric displacement ratios up to a maximum of 1.2 percent.
3. Heave of buildings ranging from three to nine stories in height and founded near the top of the clay layer on footings, caissons or short friction piles; or heave of surface structures.

Plots of maximum heave vs. normalized distance for both surface points and building points are shown on Figure 4. The effect of vertical stress from buildings in offsetting heave movements is clearly shown. At a given distance, heave of surface points is approximately twice the heave of buildings. Maximum heave nearest the site ranges from about 0.14 feet to 0.32 feet for buildings and surface points, respectively.

There were few data points to define the heave vs. distance relationship for surface points in zones A and B at normalized distances greater than 0.5. Consequently, over this range, the curves were drawn to correspond to the trends shown for the other plots on the figure.

The greatest distance from a pile driving site at which measurable heave occurs is of interest. For the cases studied, the maximum normalized distance at which measurable heave was recorded ranged from about 1.2 to 1.5. Broms (1981) and D'Appolonia (1971) have noted that the lateral limit of heave beyond the construction site in a homogeneous clay stratum is approximately equal to the depth to the bottom of the clay layer. This assumption corresponds to a normalized distance of 1.0. The soils which overlie the clay have the effect of spreading the lateral limits of ground heave.
Figure 4. Maximum Heave vs. Normalized Distance

Figure 5 shows relationships between maximum measured heave within ten feet of the construction site and volumetric displacement ratio for surface and building points. For case 1, heave occurred despite an indicated volumetric displacement ratio of 0.0. This may indicate that the augering was not in fact extended to the full depth of the clay, or that auger slurry was displaced into the ground during pile installation.

Potential for damage resulting from movements is generally correlated with angular distortion. Angular distortion is the differential movement between adjacent points divided by the distance between the points (or the slope of the movement profile). Figure 6 is a plot of maximum angular distortion versus normalized distance. A maximum angular distortion of 0.0011 was recorded. This value is approximately one-half the angular distortion of 0.002 noted to be the safe limit for buildings where cracking is not permitted (Bjerrum, 1963).

An example of ground heave contours due to pile driving is shown for case 3 in Figure 7. As shown in Weber (1978), heave contours are radially shaped. In case 3, heave decreased in all directions away from a maximum adjacent to and opposite the mid-point of the pile driving. Driving was directed from west to east. The effect of this sequence is seen in
greater heave opposite to and east of the eastern end of the site, compared to the heave opposite the western end. Also, driving over the western half caused 0.05 feet of heave at a distance 100 feet north of the driving. Driving over the easterly end of the site caused little or no heave to the west. Thus, the first piles driven provided a barrier and deflected subsequent heave toward the east.

FACTORS INFLUENCING HEAVE

The magnitude and pattern of ground heave due to pile driving in insensitive clay are influenced by numerous factors, including the following:

1. **Volume of displaced soil.** Heave magnitude is directly proportional to the volume of clay displaced by the piles. As a first approximation, the total volume of heave beyond the site limits may be assumed equal to one-half the displaced soil volume (Haggerty and Peck, 1971).

2. **Thickness and depth of clay layer.** The lateral extent of ground heave in insensitive clays is approximately equal to the depth of the bottom of the clay layer.

3. **Pile installation procedures.** The effectiveness of pre-augering can be a significant factor in controlling displacements. When wet augering is used, the auger hole size must be large enough to permit slurry to be displaced from the hole as the pile is inserted. Displacement of slurry into the ground instead of onto the ground surface, can also be controlled by reducing the rate of pile placement into the hole. Collapse of overlying granular soils into the annulus between the pile and the auger hole prior to complete placement of the pile may prevent return of displaced slurry as the pile is placed. The augering method must be effective in removing soil materials from the hole. Dry augering in clay to greater than a critical depth may result in inward squeezing of clay and subsequent disturbance, as reported by Broms (1979).

4. **Existing vertical stress.** Heave of adjacent ground is inversely proportional to the level of in-situ vertical stress. Buildings and other above grade structures will experience less heave compared to the ground surface.

5. **Pile driving sequence.** Ground heave is increased in the direction toward which piles are driven, and reduced adjacent to the location of the piles first driven.

6. **Clay sensitivity.** Greater heave is experienced in insensitive clay. Consolidation during driving reduces heave in sensitive clays.

7. **Excavation depth.** With increasing depth of foundation excavation (and working level of pile driving), heave outside the site decreases and heave inside the site increases, as noted by Broms (1981). This factor is based on the same principle as item 4 above.

8. **Granular soil layers.** As reported by Haggerty and Peck (1971), penetration of piles through alternating layers of clay and coarse-grained soils will result in substantially reduced heave compared to the response in a homogeneous clay.

SETTLEMENT AFTER HEAVE

Soil displacements and excess pore pressures which result from pile driving will cause consolidation settlements in a clay mass. The magnitude and time period of settlement will depend on the degree of disturbance and on the clay properties.

It is likely that the total net movement following heave may result in net settlement. For the four case studies reported by D'Appolonia and Lambe (1971), which include cases 3 and 6 reported herein, net settlement on the order of 1.5 inches developed in 1 to 3 years following the end of construction. Somewhat smaller settlements were shown by Weber (1978).

Other available data substantiate the above findings. Consequently, the heave generated during pile driving is only a temporary condition. Until more data exist to permit better evaluation, it is recommended that, for projects similar to conditions analyzed herein, the net settlement resulting from pile driving be projected to be equal to the anticipated heave.

Figure 8 shows the movements in some of the case studies for both surface and building points following completion of pile driving. The data show that settlement continues as much as two years following completion of pile driving. The rate of settlement decreases with time and ranges in magnitude from 1/4 to 1/2 inch per year.
SUMMARY AND CONCLUSIONS

Heave of structures near construction sites caused by pile driving through thick clay deposits is investigated. Data are presented for nine cases of measured heave of buildings and surface structures adjacent to pile driving sites in the Boston area. Data plots relate heave of low-rise buildings and ground surface to volumetric displacement ratio, and plan position with respect to the driving.

Information on angular distortion of buildings, patterns of heave, and long-term settlements after completion of pile driving is presented. Factors which influence the magnitude and pattern of ground heave, relating to site and subsurface conditions and pile installation methods are summarized.

The ground heave relationships presented in Figures 4 and 5 are useful in assessing potential heave effects due to pile driving under similar subsurface conditions. Pile driving can be designed to minimize or prevent heave by properly planning the methods and sequence of pile installation. A quantitative assessment of the impacts of pile installation variables on the magnitude of ground heave is beyond the scope of the paper.

Ground heave is a temporary condition. Data confirm that dissipation of excess pore pressure and consolidation of the clay following pile driving results in a net settlement. Additional data is required to determine, if possible, relationships between heave and long-term settlement.

REFERENCES

Casagrande, A. and L. (1958), Report to the Mc Eddy on Foundation Investigation for Dental Center in Boston, Vol. 1, pp. 1

