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TWO-POINT, TWO-COMPONENT, VELOCITY 

MEASUREMENTS IN TURBULENT PIPE FLOW

J. S. Cintra, Jr. and B. G. Jones 

University of Illinois at Urbana-Champaign

ABSTRACT

An experimental study of the turbulent velocity 

field structure was performed in a pipe flow. The pri

mary objective of this study was to provide a detailed 

velocity field structure, under isothermal conditions, 

for use as a reference condition for later investiga

tions of the interactions between fluctuating velocity 

and temperature fields, under non-isothermal conditions, 

in turbulent pipe flow.

Two-point, two-component (u^ and ^ )  velocity cor

relation measurements were made with hot— film ('x' 

probes) anemometers separated in the radial direction 

as well as two-point axial component correlation 

measurements with axial separation.

The fluctuating signals were analyzed digitally 

and both space and space-time correlations were calcu
lated.

Spatial scales for each velocity component were 

determined and then used in the modeling of two-point 

space correlations in terms of axisymmetric tensor 

forms. Finally isocorrelation curves were evaluated 

from the axisymmetric models to test their prediction 

capabilities.

INTRODUCTION

Confined turbulent flows are of prime interest in 

engineering applications.

Due to the random nature of the physical quanti

ties which describe these flows, e.g. velocity, pres

sure, temperature etc., they can commonly be analyzed 

in terms of their statistical properties. It is cur

rently impractical to obtain explicit analytical de

scriptions of velocity, temperature jr pressure fluctu

ating fields. All theories of turbulence, both analyti

cal and semi-empirical, were constructed based on sta

tistical properties of these random quantities. The 

present experimental research is concerned with semi- 

empirical theories based on "eddy diffusivity"concepts. 

Although the treatment given to the turbulence phenome

na in these models may appear oversimplified, they are 
still extremely useful in many practical applications, 

••g. the evaluation of momentum (or heat) transfer in a 
confined steady state turbulent shear flow. In many of

these theories, e.g. Prandtl's (1925) mixing length 

hypothesis, Von Karman's (1930) similarity hypothesis 

(see H. Schlichting (1968)),Taylor*s (1932) 

vorticity transport theory, and more recently,

Jenkins (1951), Azer § Qiao (1960) and Kudva et al. 

(1968), simplifications are made on the governing 

equations by introducing eddy diffusivities deter

mined from length scales and characteristic velocities. 

These characterizing quantities are expected to be 

related to the geometry of the problem and the type of 

flow and are usually obtained experimentally.

In these previous models only "spherical eddies" 

are considered and therefore they require the specifi

cation of only one length scale. The model for eddy 

diffusivities proposed initially by Tyldesley and 

Silver (1968) and with more details by Silver (1968) 

and Tyldesley (1969, 1970) can allow the eddies to 

deviate from a spherical shape. Therefore, it re

quires, at least, a two-parameter representation of 

the eddies which can be obtained directly from experi

mental iso-correlation plots, i.e., by cross correlat

ing two-point signals. Although always possible, this 

approach may require an excessive number of data points 

to become useful. If some simplifying assumptions are 

made with respect to the properties of the two-point 

correlation tensor, it is then possible to reduce the 

amount of experimentation needed and take two-point 

measurements only along some appropriate directions in 

the flow field. Isotropy and axisymmetry are two 

possible simplifying assumptions for structural forms 

for turbulence. In the present work the prediction 

capabilities of the axisymmetric forms are explored in 

connection with two-point measurements along two 

orthogonal axes in the flow field. The need to make 

these measurements is due to the unsatisfactory status 

of the reported two-point experimental results for 

turbulent flow in circular pipes. Some length scales 

from two-point measurements in water, but only for the 

axial velocity component, are given by Howard (1974), in 

the flow direction, and by Meek (1972) , in the trans

verse direction. In air some results for the normal 

component of the velocity are given by Sabot et al. 

(1973), but only at one radial location.

Therefore the primary objective of this study is 

modeling two-point velocity correlations in pipe flow. 

The purpose is to provide a basis for a later investi

gation into the Tyldesley and Silver (1968) eddy dif

fusivity model. The experimental input needed for the 

correlation modeling is obtained in terms of length 

scales for two fluctuating velocity components (u^ and
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u2) along two orthogonal directions (parallel (axial) 

and normal (radial) to the mean flow). Three scales 

are measured directly from space-correlations and a 

fourth one is estimated. Two axisymmetric models are 

investigated, namely, the two-parameter model proposed 

by Goldstein and Rosenbaum (1973) and the four parameter 

model suggested by Weber (1974).

EXPERIMENT DESCRIPTION

All measurements reported here were carried out 

in the heat transfer loop described in detail by 

Burchill (1970). The test section is vertical, has a 

circular cross section with an inside diameter of 

4.01 in. and is 28 ft. long. In Figure 1 is shown

Figure 1 - Test section illustrating relative probe 
positions
A - radial separation measurements 
B - axial separation measurements

schematically the upper portion of the test section 

illustrating relative probe positions for both radial 

and axial separation measurements. A traversing 

mechanism, designed to enter the test section from the 

top, allowed radial traverse as well as axial position
ing.

The fluctuating velocity signals were taken under 

isothermal conditions at a section 79.5 diameters from

the test section entrance. Burchill (1970) using axial 

pressure drop and turbulent shear data showed that fully 

developed flow conditions were established at that loca

tion. The fluid used in those experiments was deminer

alized water to allow the use of uncoated hot-film 

anemometer sensors.

For the two-point, two-component velocity measure

ments two end flow 'x' probes were used,thus requiring 

four channels of anemometry. Each channel of anemome- 

try was made up of one DISA type 55D01 Anemometer, one 

DISA type 55D10 Linearizer, one BAY LAB Model 5123 DC 

amplifier used as a Low Pass filter (-18 dB/octave) 

with a -3db setting at 1 KHz, and one TSI Model 1015C 

Correlator used for AC coupling with cutoff frequency 

set at 0.1 Hz (-12dB/octave) The four filtered sig

nals were then recorded on magnetic tape on a SANGAMO 

Model 3564 FM Tape Recorder.

The fluctuating signals were analyzed, on play

back, with a TSI 1065A (E Honeywell-Saicor Model 42) 

Digital Correlation and Probability Analyzer. In order 

to separate the axial from the normal component of the 

velocity, in the case of 'x' probe signals, two 

TSI 1015C Sum and Difference Correlators were used 

between the tape recorder and the 1065A. By an 

appropriate adjustment of the input gains in the 1015C 

and by operating it on the sum (or difference) mode 

we can generate an output signal proportional to the 

(or u2) component of the fluctuating velocity at 

one point. The same procedure can be applied to the 

'x' probe placed at the other point. The 1065A, after 

sampling and digitizing the input signals, produced 

auto and cross-covariances as functions of delay time 

which were plotted on a Houston Model 2000 X-Y Plotter. 

In addition to that output the zero lag time and the 

peak values were read on a Hewlett-Packard Model 
34702A Digital Multimeter.

The cross-covariances, normalized with the square 

roots of the zero delay time auto-covariances, genera

ted the correlation functions shown in Figures 2 and 3-
For the axial separation, axial component, velocity 

measurements a radial offsetting procedure was used to 

minimize interference effects on the signal from the 

downstream probe and correction factors were applied to 

the small separation correlation functions in Figure 3.

A correction factor was determined for each axial separa

tion by plotting the correlation coefficients vs. radial 

separation and selecting the operating condition at the 

smallest separation where these coefficients show no sig

nify cant effect of the wake of the upstream sensor.

More details concerning instrumentation and techniques 

involved in these measurements are given by Cintra (1975) .
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Figure 2 - Space-time correlations - axial velocity 
component, transverse separations

o

Figure 3 - Space-time correlations - axial velocity 
component, axial separations

VELOCITY FIELD RESULTS

Following the procedures previously outlined two 

groups of measurements were made, namely, two-point 

transverse separation measurements with x-probes and 

two-point axial separation single-sensor measurements. 

For all runs the flow rate was set such as to give a 

pipe Reynolds number of 56,590 and the bulk water te m 
perature was kept approximately constant, w i t h a d e v i a -  

of the average of less than 0.6°F, and equal to 80°F.

Measurements were taken and the fluctuating sig

nals processed at several radial locations (5 for 

transverse,X2 , separation measurements and 4 for axial.

Xj, separation measurements). However, not all the 

results obtained will be presented and only one radial 

location will be considered in the two-point correla

tion modeling.

In Figures 2 and 3 are presented space-time cor

relations for the axial component of the velocity ob

tained, respectively, from transverse and axial separ

ation measurements. The interpretation of space-time 

curves from measurements with separations in the flow 

direction has become common in terms of a convected 
frame structure. However, little attention has been 

paid so far to similar measurements with separations 

in a direction normal to the mean flow. It will be 

shown later in this paper that such measurements may 

be extremely useful in modeling two-point correlations 

and estimating shapes of the turbulent eddies.

In Figure 4 are presented space-correlation re

sults for the normal velocity component from x2 separ

ation measurements. A similar set of results was ob

tained for the axial velocity component. Both sets 

were then used to calculate the integral length scales 

shown in Figure 5. In this figure a trend toward equal 

scales for velocity components is observed as one moves away

Figure 4 - Space correlations - normal velocity 
component, transverse separations
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.20 T
from the wall and in the direction of the center of 

the pipe. The same trend was also observed with 

length scales for temperature fluctuations (reported 

by Cintra (1975)), where < L ^  < was ob

tained for all measured radial locations.

Integral time-scales in the convected frame for 

the axial component of the velocity were calculated 

by an exponential fit to the envelope of all space- 

time curves with axial separation (Figure 2). These 

results are presented in Table 1 together with esti

mated values for the time scale for the normal com

ponent of the velocity obtained by using the ratios 

between these scales reported by Sabot and Comte- 

Bellot (1974). Finally, integral length scales for 

the normal component of the velocity calculated with

« T(1)22

are also given in Table 1.

(1)

oa

c

«,o,A-axial velocity c o m p o n e n t
t ,7-NORMAL VELOCITY COMPONENT

.05- ▼ SABOT ET AL (I9T3)
■ SABOT-COMTE BELLOT (1972)
DARK SYMBOLS ONE-SIDED CORRELATIONS 
o MEEK (1972) PRESENT DATA
OPEN SYMBOLS - CENTERED CORRELATIONS
____ i_______i_______i-------1-

.2 .4 .6 8 LO

Y/R

Figure 5 - Integral length scales transverse direction

Centered correlations

One-sided correlations

Rii[(Y)’(Y + x2)] dx2

y/R T d)
*11 (est) L^(est)

(msec) (msec) (in)

0.75 668 227 0.164

0.50 585 133 0.112

0.25 560 88 0.086

0.10 358 43 0.046

Table 1 - Integral time and length scales

AXISYWETRIC MODELING OF TWO-POINT CORRELATIONS

The inappropriateness of the isotropic models to 

represent confined shear flows can readily be seen by 

looking at the differences between the intensities 

for the various velocity components or the existence 

of non-zero shear coefficients. Therefore, to repre

sent two-point correlations we have examined somewhat 

more complicated forms; namely, the ones from axisym

metric models.

The theory of axisymmetric turbulence was first 

derived by Batchelor (1946) and extended by Chandra
sekhar (1950). In this theory the two-point correla-

with x2 = first zero crossing 
o

tion tensor defined by

Q±j - U.(X) u.(X ♦ x) (2)

is invariant only for rotations with respect to a pre-
■f

ferred axis (X) and reflections in planes containing 

this axis. This theory assumes homogeneity which 

makes it applicable only to regions in the flow field 

where the length scales are small compared to the 

spatial variation of the turbulence intensities. The 

end result of this theory is that the correlation ten

sor Q^. can be fully represented by knowledge of two- 

scalar functions and Q2 of the variables r2 and ry 

such that the following equations are satisfied 

(Chandrasekhar 1950)

Q.. ■ A£.£. ♦ B6. . ♦ CA. A .♦ D (A. £. ♦ A.) (3)
i] i  J i j  i  i v 1*1 i  y  '

where

A = ( V V  Q1 + Dr Q2 <4a)

B - [~(r2Dr ♦ ryD^ ♦ 2) + r2 (l-y2)D^-ryD^]Qj

- [r2(l-y2)Dr ♦ 1]Q2 (4b)
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C = -r2DypQ1 + (r2Dr+l)Q2 (4c)

D = (ryDy + D D ^  - yr DrQ2 (4d)

2 +  +
with r = £ * £ , r y  = £ * A  (as shown in Fig. 6),

i  3 _ JL J Lr “57 " r2 8y D = —  -TT- and D y r 3y yy D D
V y

In order to relate correlations with the scalar 

functions and Q2 let us consider the systems of 

coordinates shown in Figure 6.

If we use a tilde to represent components of 

vectors and tensors in the axisymmetric system of 

coordinates, we have relations between correlations 

in the two systems of the form

^j (̂Xj , x2,Xj) = (£j*?2’ *)>“2Rj2(Cj »̂ 2»£3)*

•sin<|>cos(t) + **22^1’̂ 2’^3)sin2<*) (5)

where R^, R^2 and R22 are given by the following dif

ferential equations (Goldstein § Rosenbaum - 1973)

11 l 3
a "5 a 2 Qi^i*°)a ---- -̂----

Q2CC1,a)
22 ^ r s - ^ r

(6)

/r2 32 232 . , 2  32VQx(Sj.o)

V3 9^13^2 Cl « { T
U2

(7)

^  3 rQi
r12 - 3 T  \ - = ---- (8)

with a2 - £2 ♦ (9)

The remaining problem to obtain a representation 

of the two-point correlations is the specification of 

the scalar functions and Q2. Two approaches were 

analyzed: the two-parameter model from Goldstein § 

Rosenbaum (1973) and the four parameter model from 

Weber (1974).

Goldstein § Rosenbaum (1973) have proposed the 

following relations for the defining scalars and Q2

QiCq.cr) (10)

—  ~2
Q2 = " (U2 ‘ UP  exp

By using (10) and (11) we can solve (6) through (8) and 

then use relations like (5) to obtain expressions for 

the correlations in the flow system of coordinates. 

Finally, by integration, we can use measured experimen

tal length scales to evaluate the parameters and 

SL2, e.g., through

Rll(°»x2»0) dx2 (12)

with x2 ■ first zero crossing of R ^ O . x ^ O ) .  
o

From this we obtain

l1

with

Ui L22^ (sin2<fr + P2c o s24>)
1/2

^2 . 2, UjSin < A ^2 2, + u2cos 4

(14)

u2 L (2) U1 L11

7  L C2) 2 L22

*1

*7
(is)

The first difficulty in using this two parameter 

model is that for a given set of length scales the al

lowed angles of axisymnetry may not yield realistic 

correlation functions. For example, for pipe flow and 

from measurements at Y/R ■ 0.50 the solutions of (13) 

(presented in Figure 7), it is clear that only values 

for the angle of axisymmetry close to 90* are allowed. 

If we use some $ angle in this range the resultant
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Figure 7 - Angular dependence of free parameter ratio 

in Goldstein model with Lj ^ / L22^ = 1,276

isocorrelation contours (shown in Figure 8) are unac

ceptable for pipe flow (Sabot-Comte Bellot - 1972).

Figure 8 - Isocorrelation contours - Goldstein two 
parameter model

A similar analysis can be applied by using other 

measured values of length scales, e.g. and L ^ .

The range of $ angles for which solution is possible 

will be different but the end result still will be that 

we cannot, for pipe flow, represent well and simulta

neously the two correlation functions j(x^.Xj) and 

R22 x̂ 1,x 2^ wlth only two free parameters fcj and
This fact led Weber (1974) to derive a four para

meter axisymmetric model. However, instead of postu

lating functional relations for the scalar functions 

Qj and Q2 depending on four parameters he examined the 

behaviour of the correlation functions themselves and 

proposed the following expressions to represent them 

(letting = 0, for simplicity, then a = £2).

V m 2>-

^22^1 1

(16)

The equation for is the same as the one in the 

previous model and so is Qj but Q2 was then calculated 

from the postulated expression for 1^2’
Following the same procedure as before to relate 

free parameters to experimentally measured length 

scales we obtain relations

1 ^2.-  u.A. + a l l
1 ^2r 
tt u 2C1 = u 2L (1)V n

1 ^2- 
7  uiBi +

1 ^2n 2. (2) 
A U2°l = U1L11

1—  u.A_ + a 1 2
1 ~ 2 _  
tt U2C2

= u 2L (1) 2L22

1 ^2„
7  u ib2 +

1 ^2n 2. (2) 
A U2°2 U2L22

(18a)

(18b)

(18c)

(18d)

(19)

( 2 0 )

(21)

( 22)

The coefficients CiiC2,d i and D2 are functions of the 
angle of axisymmetry alone and A ^ A ^ B j  and B2 are 

functions of <)> and the ratio (i^/i^) . The solutions 

of (18) were obtained by an interactive scheme and the 

results for different angles of axisymmetry are pre

sented on Table 2. Unlike the two parameter Goldstein 
model the four parameter model allows solutions only
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<J> (DEG) Remarks
.6

( . V ^ )  2 ( y n 2) 2

60 No Sol. No Sol
50 No Sol. No Sol

40 6.20 < 0

30 0.119
1.195 < 0

20 0.112 < 0

10 5.407 0.491

,1 < %2 < 10

Table 2 - Angular dependence of free parameter ratios 
4 parameter model (y/R = 0.50)

for small angles of axisymmetry which means that the 

axis of axisymmetry is more or less aligned with the 

mean flow as would be expected for fully developed 

pipe flow.

Up to this point nothing has been said about the 

physical specifications of the $ angle. Weber (1974) 

used the shear angle as <j> and showed good agreement 

with experimental results for the mixing layer in a 
round jet. In the present work a different approach 

was taken; namely, by that of considering the space- 

time correlation curves available from transverse sep

aration measurements (Figure 2). By assuming that the 

isocorrelation contours can be represented by ellipses 

and by taking (Sabot-Comte Bellot(1972))

R11(X1,X2;0) = RllC0,X2;Tm) (23)

with x*
*  *  i

T U = T —  m ave m x2

and 3RH

3Xj (xi»x25 *

+ x 2/2

/ Uj (Y+n)dri 

- x2/2

(24)

(25)

we can calculate the isocorrelation curves presented 
in Figure 9. In order to check the validity of this 

procedure predicted correlations along the x-axis were 
compared with experimentally measured values (dark 

symbols in Figure 9). Due to this reasonable agree
ment, we feel that it is acceptable to equate the <J> 

angle to the angle between the major axis of the el

lipse and the flow direction. It is clear now in 

Figure 9 why the shear angle (24.1° at the location 

studied) can be used only for small separations in 

pipe flow. If one wants to represent mainly the large 

scale structure of the correlation functions, a much 

smaller angle would be appropriate, e.g. 10°, which is 

consistent with the previous calculations made for the 

four parameter model and presented on Table 2. Iso

correlation maps calculated with this angle are shown 

in Figure 10.

Figure 9 - Ellipse representation of isocorrelation 
contours

x,/R
Figure 10 - Isocorrelation contours - Weber four 

parameter model

CONCLUSIONS

The principal conclusions from the measurements 

made and the two axisymmetric models studied in this 

work are:

(1) Space-time cross correlations with trans

verse separations can be used to estimate 

the shape of isocorrelated regions in the 

flow field.

(2) The main orientation of the isocorrelation 

contours in pipe flow shows a variable angle 

of inclination with respect to the mean flow 
direction.

(3) The two parameter Goldstein and Rosenbaum 

(1973) model is not adequate for a two- 
dimensional representation of the correla

tion functions for the two components of the 

fluctuating velocity (Uj and u2) in pipe 

shear flow. The four parameter Weber (1974) 

model can provide a reasonably good descrip

tion for this type of flow.

(4) The best value for the angle of axisymmetry 

to represent large scale eddies in a pipe 

flow is much smaller than the shear angle.

The following limitations must be added to the 
previous conclusions:

(1) The testing of the axisymmetric models in

this study was done at only one radial loca

tion. The extension of the results and con-
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elusions to all other points in the flow 

field may not be completely valid.
(2) In both models tested the dependence of the 

correlation functions on the x^-separation 

coordinate was always combined with the de
pendence on the x9-separation coordinate.

<\,(2) ^ ^ 3 )As a result was implied in both
models, although there is currently no ex
perimental evidence that this holds for pipe 

flow. Therefore, additional two point mea

surements in planes of x^ = constant may be 

in order to further investigate these axi

symmetric models.
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GREEK LETTERS

X = vector, defining axis of rotational invari

ance

^1*^2*^3 = comPonents separation vector-axisymmet- 
ric system 

t  = time delay
*

Tm = optimum time delay for cross-correlation

with transverse separation 

<t> = angle of axisymmetry

SUPERSCRIPTS

= denotes long time average 

^  = denotes quantity evaluated in the axisymmetric

system of coordinates
' = denotes root mean square of a fluctuating

quantity

(i) = denotes i—  separation direction 

SUBSCRIPTS
MP = denotes distance referred to the mid point 

between sensors

W = denotes distance referred to the wall sensor 

ij = denotes velocity components
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DISCUSSION

W. W. Willmarth, Univ. of Michigan: What is the 

angle of maximum shear?

Willmarth: What was the frequency response of your 

complete system?

Jones: The system had a response from essentially D.C. 

to 1250 Hz with the lower limit established from the 

anemometry of - 0.1 Hz.

Willmarth: Where in the flow are your correlation con

tours measured? What is meant by axial symnetry? The 

patterns you showed don't look axisymmetric.

Jones: The correlation contours are measured in fully 
developed flow at selected radii with probe separations 

taken from these radii. The picture is that of an 

inclined elongated spheroid with principal axes in

clined to the mean flow by the angle, <f>, the angle of 

axisymmetry, which establishes the principal axis about 

which the elongated spheroid has rotational symmetry.

Victor Goldschmidt, Purdue University: Did you obtain 

the same structure at all radial positions?

Jones: We observe a consistent angle between larger 

separation measurements for a selected Y/R. However, 

we do not have sufficient data to study effects for 

different Y/R. Although four Y/R values were used in 

the study complete evaluation of the correlations in 

all three separations was not done for each radial 

selection.

R. L. Hummel; University of Toronto: You are using 

four length parameters. Can you justify these in 

terms of adjusting what these parameters represent?

Jones: The values £-|, m-j and m2 represent 

structural parameters which are evaluated within model 

constraints from the two-dimensional turbulent struc

ture length scales and are not adjustable. However, 

in the two-parameter model given by eq. (10) through 

(15) it is clear that any two length scales could be 

selected to define p in eq. (15) which gives the 

functional relation of the parameter ratio through 
eq. (13) as

Jones: This is similar to the Moor's circle definition 

of principal axes and maximum shear and in terms of 

turbulent velocity components is given by

6 = tan-1 2 uv

T  "Tu + v

= f(*. p . u2 . u1 )

55


	Two-Point, Two Component, Velocity Measurements in Turbulent Pipe Flow
	Recommended Citation

	tmp.1506097087.pdf.X7EyV

