May 6th, 12:00 AM

Bearing Capacity of Piles under Long Term Vibration

Xu You Zai
Liu Yao Fu
Shi Yul Iang
Xin Su Lan

Follow this and additional works at: http://scholarsmine.mst.edu/icchge

Recommended Citation
http://scholarsmine.mst.edu/icchge/1icchge/1icchge-theme1/3

This Article - Conference proceedings is brought to you for free and open access by the Geosciences and Geological and Petroleum Engineering at Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. For more information, please contact weaverjr@mst.edu.
Bearing Capacity of Piles Under Long-Term Vibration

Xu You Zai
Senior Engineer, Central Research Institute of Building & Construction M.M.I. Beijing, China

Liu Yao Fu
Shi Yuliang and Xin Su Lan
Engineers, Central Research Institute of Building & Construction M.M.I. Beijing, China

SYNOPSIS The Bearing capacity of piles under long-term vibration is herein discussed. A real case of continuous subsidence of vibrating pile foundations is presented with a set of vibratory loading tests in-situ and the characteristics of settlement-time curves are described. Analysis of the observed data are made and the additional plastic deformation induced in the soil strata under the piles is interpreted. Based on the test data, authors recommend a conception of long-term bearing capacity of piles to be used in the design of pile foundation under vibration instead of the conventional one, and a method of determination of bearing capacity of single pile is presented.

INTRODUCTION

Pile foundations are widely used to transfer the load of superstructures onto the deeper and suitable soil strata for minimizing the foundation settlements, but it is not always the case with pile foundations subjected to the long-term vibration.

An extensive investigation completed in China has shown that heavy additional settlements of pile foundations have been found in many industrial buildings under long-term vibration and last as long as the dynamic effect exists. The non-uniform settlements of pile foundations usually damage the structures and cracks have been observed. A typical graph of development of vibration pile foundation settlements with time at Qiqihar Rolling Stock Plant is shown in Fig. 1, which implies that neglect of the effect of long-term vibration leads to overestimation of bearing capacity of pile.

Although many experimental studies have been made on the dynamic properties of soil, the effect of long-term vibration on pile foundations has not yet been adequately investigated. A real case and a set of field tests were described herein and intended to clarify the effect of long-term vibration on the pile foundations and to seek the solution for determination of bearing capacity of piles under long-term vibration.

BRIEF DESCRIPTION OF THE REAL CASE

The forging shop of Qiqihar Gear Plant is a single span structure, 36 18m in size, rested on the alluvial deposits near the Nenjiang River. A 3tf forging hammer is mounted on an open caisson foundation embedded at a depth of 5.6m below.

The columns of superstructure are supported by 10 reinforced concrete pile foundations, each consists of 10 piles. The pile is 6m long, 25 25cm in section. Ultimate bearing capacity of pile obtained by load test is 44tf. Under normal conditions, each pile carries a load of 17.5tf on an average.

Fig. 1. Graph of Development Foundation Settlements Observed at Qiqihar Rolling Stock Plant.
Before the dynamic testing static load tests were carried out on piles by conventional method. Load-settlement curves (Fig.18 and 19, for P_d obtained from static pile tests showed that ultimate load $P_J=60tf$, and $P_J=84tf$ for reinforced concrete pile). Thus the static load P_s applied on each test pile was $1/3 P_J$, $1/2 P_J$ and $3/4 P_J$ respectively. Test procedure is as follows:

Firstly, a static load P_s was applied on the pile stepwise, then alternatively increased and decreased by 5t, and the corresponding settlements measured. This process was repeated until the increment of settlement in every loading was equal to the elastic rebound in corresponding unloading, then the pile was excited by a vibrator with constant acceleration for each test (0.03g, 0.05g and 0.15g successively). Durat of continuous vibration in each test was no less than 30 hours. Amplitudes and accelerations of pile vibration were recorded during the test and the settlements of piles regularly measured to an accuracy of 0.01mm.

The graphs of the development of additional settlements of steel pipe piles with time under different vibration levels are shown in Fig.5, 6 and 7.

The same features in the development of settlements have also been found for reinforced concrete piles (Fig.8, 9 and 10).
ANALYSIS OF THE EXPERIMENTAL DATA

1. Since the compression set of soil had been completed by a number of static cyclic loading before the vibrator was put into operation, so the additional settlement of pile is mainly due to the plastic deformation in soil directly beneath the pile tip.

2. Development of settlements with time exhibits the vibro-creeping behaviour of soil. As can be seen from Fig.11, the creeping rate may be increased, decreased or kept constant with time depending on the acceleration for a given sustained load P_s or depending on the sustained load P_s for a given acceleration. Consequently, the additional settlements are controlled both by acceleration and sustained load, which agrees with the investigation results.

First International Conference on Case Histories in Geotechnical Engineering
Missouri University of Science and Technology
http://ICCHGE1984-2013.mst.edu
According to the field test results and long-term settlement data collected during investigation, a rheological model consisting of Bingham and Kelvin elements in series has been proposed to account for the vibrocreep behavior of soil (Xu Y. Z. et al 1982).

As shown in Fig. 12, if the total stress is \(\sigma \), then the total strain of the model can be written as

\[
\varepsilon = \varepsilon_s + \varepsilon_d
\]

or

\[
\varepsilon = \frac{\sigma}{E} \left(1 - e^{-\frac{\sigma}{\eta_1}}\right) + \frac{\sigma - \sigma_c}{\eta_2} t
\]

in which

\[
\sigma = \sigma_s + \sigma_d
\]

where \(\varepsilon_s \) is the strain due to the vibrocompaction, \(\varepsilon_d \) is the strain due to the vibrocreep, \(\sigma_s \) is the total stress, \(\sigma_d \) is the stress due to static load, \(\sigma_c \) is the stress due to dynamic load, \(E \) is the spring constant, \(\eta_1 \) and \(\eta_2 \) are the viscosity factors of dashpots depending on the acceleration, \(\sigma_c \) is the critical stress for the given level of vibration, \(t \) is the time interval.

When \(\sigma < \sigma_c \) the lower part of the model refuses to act, so the second term on the right drops out. Thus, the creep does not occur and the model predicts essentially vibrocompaction of the soil.

When \(\sigma > \sigma_c \), creep continuous indefinitely, its rate is dependent on the \(\eta_2 \) and the stress intensity \(\sigma \), the greater the \(\sigma \) or the smaller the \(\eta_2 \), the higher the creep rate.

3. The skin friction resistance on piles decreases with vibration, and stress concentration is induced in soil directly beneath the pile tip, which has been confirmed by measuring the strains along the pile shaft and the load transferred by pile tip in the test pit. In Fig. 13, curve 'a' and curve 'b' show the measured mean vertical stresses along the shaft before and during the vibration, curve 'c' and curve 'd' represent the estimated pressure distribution at the level of pile tip before and during vibration. That is one of the reasons which cause the plastic deformation appearing ahead.

4. On the other hand, soil strength decreases with vibration due to stress variation. If \(\tau \) principal stresses at a given point are \(\sigma_1 \) and \(\sigma_3 \) under the vibration they will change to \(\sigma_1 \pm \Delta \sigma_1 \) and \(\sigma_3 \pm \Delta \sigma_3 \) respectively (\(\Delta \sigma_1 \) and \(\Delta \sigma_3 \) are the stresses due to vibration), which may lead to transient plastic equilibrium (Fig. 14).

In addition, dynamic triaxial test results indicate that angle of dynamic friction is usually smaller than that of static friction. Fig. 15 shows the dynamic shear strength envelopes of dry sand samples for different ratios of initial consolidation pressure \(K_c \) in comparison with static one, where \(\phi_d \) and \(\phi \) are dynamic and static friction angles respectively.

5. If the bearing soil strata are saturated, the pore-water pressure may take place, especially for the fine sands with low relative densit. Because of small magnitude of amplitude the pore-water pressure may still reach a value equal to the confining pressure or a value causing the failure of soil (Fig. 16).
Fig. 15. Dynamic Shear Strength Envelopes of Dry Sand

\[S(kg/cm^2) \]
\[\gamma (kg/cm^2) \]
\[\phi = 30^\circ \]
\[\theta = 33^\circ \]
\[K_0 = 0.5 \]
\[K_r = 2 \]

Fig. 16. Development of Bore-water Pressure in Long-term Cyclic Triaxial Test on Fine Sand, \(e = 0.60, D_r = 72\% \)

LONG-TERM BEARING CAPACITY OF PILE

If an additional settlement of 1mm is taken to be a tolerable value, the corresponding load for a given acceleration (such as \(a = 0.15g \) for SP pile and \(a = 0.19g \) for RC pile) can be considered as the bearing capacity of pile. Then the graphs of development of bearing capacity with time can be obtained (Fig.17 and 18), which show that the bearing capacity of pile under long-term vibration \(P_t \) decreases with time and finally approaches to a minimum value \(P_{al} \) referred to as long-term bearing capacity expressed as follows:

\[P_t = P_{al} + (P_a - P_{al})e^{-\frac{t}{t_r}} \] \hspace{1cm} (3)

where \(P_a \) is the static bearing capacity of pile determined by load test, 't' is time interval, 't_r' is relaxation time dependent on soil conditions and acceleration.

Plotting the final stable settlements against the corresponding loads for \(a = 0.02g, 0.04g \) and \(0.19g \) from Fig.8, 9 and 10 as well as that from static load test for \(a = 0 \), a set of load-settlement curves for reinforced concrete piles can be obtained (Fig.19), and similar curves for steel pipe piles can also be obtained from Fig.5, 6, 7 and static load test (Fig.20), whereby bearing capacity of pile for any desirable accelerations can be readily determined by interpolation.

CONCLUSIONS

1. The continuous subsidences of pile foundations under long-term vibration are induced by the plastic deformation of bearing stratum under the pile tip, which is in turn caused by the increase in soil stress and decrease in soil strength.

2. The development of settlements with time has rheological features and its rate depends on vibration level and static load imposed on the pile.

3. Owing to the plastic deformation of soil induced by vibration, the bearing capacity of pile markedly decreases with time and reaches a mini-
Fig. 20. Load-settlement Curves of SP Piles for Different Acceleration

The maximum load known as long-term bearing capacity which also depends on the vibration level.

Therefore, the permissible load on a pile should not exceed its long-term bearing capacity which can be determined by the dynamic load test described in this paper.

REFERENCES

